This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275514 #15 May 31 2023 09:50:54 %S A275514 1,1,-1,1,0,0,1,2,1,0,1,5,5,0,0,1,9,15,1,0,0,1,14,35,7,0,0,0,1,20,70, %T A275514 28,1,0,0,0,1,27,126,84,9,0,0,0,0,1,35,210,210,45,1,0,0,0,0,1,44,330, %U A275514 462,165,11,0,0,0,0,0,1,54,495,924,495,66,1,0,0,0,0,0,1,65,715 %N A275514 Triangle read by rows: the coefficient [t^k] of the Ehrhart polynomial of the 2-hypersimplex in dimension n. %H A275514 Robert Coquereaux and Jean-Bernard Zuber, <a href="https://arxiv.org/abs/2305.01100">Counting partitions by genus. II. A compendium of results</a>, arXiv:2305.01100 [math.CO], 2023. See p. 10. %H A275514 Nan Li, <a href="http://dx.doi.org/10.1007/s00454-012-9452-2">Ehrhart h*-vectors of hypersimplices</a>, Discr. Comp. Geom. 48 (2012) 847-878, Eq. (1.1) %e A275514 The triangle starts in row n=1 with coefficients 0<=k<n as: %e A275514 1; %e A275514 1, -1; %e A275514 1, 0, 0; %e A275514 1, 2, 1, 0; %e A275514 1, 5, 5, 0, 0; %e A275514 1, 9, 15, 1, 0, 0; %e A275514 1, 14, 35, 7, 0, 0, 0; %e A275514 1, 20, 70, 28, 1, 0, 0, 0; %e A275514 1, 27, 126, 84, 9, 0, 0, 0, 0; %e A275514 1, 35, 210, 210, 45, 1, 0, 0, 0, 0; %e A275514 1, 44, 330, 462, 165, 11, 0, 0, 0, 0, 0; %e A275514 1, 54, 495, 924, 495, 66, 1, 0, 0, 0, 0, 0; %e A275514 1, 65, 715, 1716, 1287, 286, 13, 0, 0, 0, 0, 0, 0; %p A275514 subki := proc(n,r,l) %p A275514 local i,t; %p A275514 add(t^i,i=0..l-1) ; %p A275514 %^n ; %p A275514 expand(%) ; %p A275514 coeff(%,t,r) ; %p A275514 end proc: %p A275514 hstard := proc(d,k,n) %p A275514 add((-1)^i*binomial(n,i)*subki(n, (k-i)*d-i,k-i) ,i=0..k-1) ; %p A275514 end proc: %p A275514 A275514 := proc(n,k) %p A275514 hstard(k,2,n) %p A275514 end proc: %Y A275514 Cf. A010054 (coefficients for the 1-hypersimplex), A258993, A000295 (row sums), A000096 (column k=1), A000332 (k=2), A000579 (k=3), A000581 (k=4), A001287 (k=5). %K A275514 sign,tabl,easy %O A275514 1,8 %A A275514 _R. J. Mathar_, Jul 31 2016