A275525 Numbers k such that (73*10^k + 107)/9 is prime.
2, 3, 5, 6, 11, 12, 26, 32, 36, 75, 137, 143, 279, 290, 363, 716, 770, 1377, 1638, 4470, 5952, 10526, 15132, 27054, 81485
Offset: 1
Examples
3 is in this sequence because (73*10^3+107)/9 = 8123 is prime. Initial terms and associated primes: a(1) = 2, 823; a(2) = 3, 8123; a(3) = 5, 811123; a(4) = 6, 8111123; a(5) = 11, 811111111123, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 81w23.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(73*10^#+107)/9] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime((73*10^n+107)/9), print1(n, ", "))); \\ Altug Alkan, Aug 11 2016
Comments