This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275530 #62 Aug 18 2022 14:21:25 %S A275530 3,3,3,9,3,3,3,113,331,513,827,799,3291,5041,71,220221,23891,11559, %T A275530 187503,35963 %N A275530 Smallest positive integer m such that (m^(2^n) + 1)/2 is prime. %C A275530 The terms of this sequence with n > 11 correspond to probable primes which are too large to be proven prime currently. - _Serge Batalov_, Apr 01 2018 %C A275530 a(15) is a statistically significant outlier; the sequence (m^(2^15)+1)/2 may require a double-check with software that is not GWNUM-based. - _Serge Batalov_, Apr 01 2018 %H A275530 Richard Fischer, <a href="http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt">Generalized Fermat numbers with odd base</a> %H A275530 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fermat_number">Fermat number</a> %e A275530 a(7) = 113 since 113 is the smallest positive integer m such that (m^(2^7)+1)/2 is prime. %p A275530 a:= proc(n) option remember; local m; for m by 2 %p A275530 while not isprime((m^(2^n)+1)/2) do od; m %p A275530 end: %p A275530 seq(a(n), n=0..8); %t A275530 Table[m = 1; While[! PrimeQ[(m^(2^n) + 1)/2], m++]; m, {n, 0, 9}] (* _Michael De Vlieger_, Sep 23 2016 *) %o A275530 (PARI) a(n) = {my(m = 1); while (! isprime((m^(2^n)+1)/2), m += 2); m;} \\ _Michel Marcus_, Aug 01 2016 %o A275530 (Python) %o A275530 from sympy import isprime %o A275530 def a(n): %o A275530 m, pow2 = 1, 2**n %o A275530 while True: %o A275530 if isprime((m**pow2 + 1)//2): return m %o A275530 m += 2 %o A275530 print([a(n) for n in range(9)]) # _Michael S. Branicky_, Mar 03 2021 %Y A275530 Cf. A056993, A027862. %K A275530 nonn,more %O A275530 0,1 %A A275530 _Walter Kehowski_, Jul 31 2016 %E A275530 a(13)-a(14) from _Robert Price_, Sep 23 2016 %E A275530 a(15) from _Serge Batalov_, Mar 29 2018 %E A275530 a(16) from _Serge Batalov_, Mar 30 2018 %E A275530 a(17) from _Serge Batalov_, Apr 01 2018 %E A275530 a(18)-a(19) from _Ryan Propper_, Aug 16 2022. These correspond to 1382288- and 2388581-digit PRPs, respectively, found using an exhaustive search with Jean Penne's LLR2.