cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275546 a(n) = (tan(1*Pi/11))^(2*n) + (tan(2*Pi/11))^(2*n) + (tan(3*Pi/11))^(2*n) + (tan(4*Pi/11))^(2*n) + (tan(5*Pi/11))^(2*n).

Original entry on oeis.org

5, 55, 2365, 113311, 5476405, 264893255, 12813875437, 619859803695, 29985188632421, 1450508002869079, 70167091762786205, 3394273427239643839, 164195092176119969173, 7942798031108524622951, 384226104001681151724877, 18586611219134532494467151, 899111520569015285343455941, 43493755633501102693569684087, 2103973462501643822799172235773
Offset: 0

Views

Author

Kai Wang, Aug 01 2016

Keywords

Comments

(tan(1*Pi/11))^(2*n), (tan(2*Pi/11))^(2*n), (tan(3*Pi/11))^(2*n),(tan(4*Pi/11))^(2*n), (tan(5*Pi/11))^(2*n) are roots of the polynomial x^5 - 55x^4 + 330x^3 - 462x^2 + 165x - 11.
Sum_{k=1..((m-1)/2)} (tan(k*Pi/m))^(2*n) is an integer when m >= 3 is an odd integer (see AMM link); this sequence is the particular case m = 11. All terms are odd. - Bernard Schott, Apr 24 2022

Crossrefs

Similar to: A000244 (m=3), 2*A165225 (m=5), A108716 (m=7), A353410 (m=9), this sequence (m=11), A353411 (m=13).

Programs

  • PARI
    a(n)=([0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1;11,-165,462,-330,55]^n*[5;55;2365;113311;5476405])[1,1] \\ Charles R Greathouse IV, Aug 01 2016
    
  • PARI
    Vec((5-220*x+990*x^2-924*x^3+165*x^4)/(1-55*x+330*x^2-462*x^3+165*x^4-11*x^5) + O(x^20)) \\ Colin Barker, Aug 02 2016

Formula

a(-2) = 141, a(-1) = 15, a(0) = 5, a(1) = 55, a(2) = 2365.
a(n) = +55*a(n-1)-330*a(n-2)+462*a(n-3)-165*a(n-4)-11*a(n-5) for n > 2.
a(n) ~ k^n where k = 48.37415... is the largest real root of x^5 - 55x^4 + 330x^3 - 462x^2 + 165x - 11. - Charles R Greathouse IV, Aug 01 2016
G.f.: (5-220*x+990*x^2-924*x^3+165*x^4) / (1-55*x+330*x^2-462*x^3+165*x^4-11*x^5). - Colin Barker, Aug 02 2016