A275546 a(n) = (tan(1*Pi/11))^(2*n) + (tan(2*Pi/11))^(2*n) + (tan(3*Pi/11))^(2*n) + (tan(4*Pi/11))^(2*n) + (tan(5*Pi/11))^(2*n).
5, 55, 2365, 113311, 5476405, 264893255, 12813875437, 619859803695, 29985188632421, 1450508002869079, 70167091762786205, 3394273427239643839, 164195092176119969173, 7942798031108524622951, 384226104001681151724877, 18586611219134532494467151, 899111520569015285343455941, 43493755633501102693569684087, 2103973462501643822799172235773
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..550
- Michel Bataille and Li Zhou, A Combinatorial Sum Goes on Tangent, The American Mathematical Monthly, Vol. 112, No. 7 (Aug. - Sep., 2005), Problem 11044, pp. 657-659.
- Index entries for linear recurrences with constant coefficients, signature (55,-330,462,-165,11).
Crossrefs
Programs
-
PARI
a(n)=([0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1;11,-165,462,-330,55]^n*[5;55;2365;113311;5476405])[1,1] \\ Charles R Greathouse IV, Aug 01 2016
-
PARI
Vec((5-220*x+990*x^2-924*x^3+165*x^4)/(1-55*x+330*x^2-462*x^3+165*x^4-11*x^5) + O(x^20)) \\ Colin Barker, Aug 02 2016
Formula
a(-2) = 141, a(-1) = 15, a(0) = 5, a(1) = 55, a(2) = 2365.
a(n) = +55*a(n-1)-330*a(n-2)+462*a(n-3)-165*a(n-4)-11*a(n-5) for n > 2.
a(n) ~ k^n where k = 48.37415... is the largest real root of x^5 - 55x^4 + 330x^3 - 462x^2 + 165x - 11. - Charles R Greathouse IV, Aug 01 2016
G.f.: (5-220*x+990*x^2-924*x^3+165*x^4) / (1-55*x+330*x^2-462*x^3+165*x^4-11*x^5). - Colin Barker, Aug 02 2016
Comments