This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275549 #14 Sep 13 2019 20:24:12 %S A275549 1,1,3,18,136,1625,23436,412972,8390656,193739769,5000050000, %T A275549 142656721086,4458051717120,151437584670385,5556003465485760, %U A275549 218946946471875000,9223372039002259456,413620131002462320337,19673204037747448432896,989209827833222327690890 %N A275549 Number of classes of endofunctions of [n] under reversal. %C A275549 f and g are in the same class if function g(i) = f(n+1-i) for all i. %C A275549 Decomposition by class size %C A275549 . %C A275549 n 1 2 %C A275549 --------------- %C A275549 1 1 0 %C A275549 2 2 1 %C A275549 3 9 9 %C A275549 4 16 120 %C A275549 5 125 1500 %C A275549 6 216 23220 %C A275549 7 2401 410571 %C A275549 . %C A275549 Demonstration for the formula: the classes are either of size 1 or 2. %C A275549 The classes of size 1 is for functions invariant by reversal. They are specified by half their values, including one more if n is odd. Their number is n^(ceiling(n/2)). %C A275549 So the number of classes under this symmetry is half (the number of functions + the number of classes of size 1). %C A275549 a(n) is the number of unoriented length n strings with a maximum of n colors. - _Andrew Howroyd_, Sep 13 2019 %H A275549 Andrew Howroyd, <a href="/A275549/b275549.txt">Table of n, a(n) for n = 0..200</a> %F A275549 a(n) = (n^n+n^ceiling(n/2))/2. %o A275549 (PARI) a(n) = {(n^n + n^((n+1)\2))/2} \\ _Andrew Howroyd_, Sep 13 2019 %Y A275549 Main diagonal of A277504. %Y A275549 Cf. A000312 All endofunctions %Y A275549 Cf. A000169 Classes under translation mod n %Y A275549 Cf. A001700 Classes under sort %Y A275549 Cf. A056665 Classes under rotation %Y A275549 Cf. A168658 Classes under complement to n+1 %Y A275549 Cf. A130293 Classes under translation and rotation %Y A275549 Cf. A081721 Classes under rotation and reversal %Y A275549 Cf. A275550 Classes under reversal and complement %Y A275549 Cf. A275551 Classes under translation and reversal %Y A275549 Cf. A275552 Classes under translation and complement %Y A275549 Cf. A275553 Classes under translation, complement and reversal %Y A275549 Cf. A275554 Classes under translation, rotation and complement %Y A275549 Cf. A275555 Classes under translation, rotation and reversal %Y A275549 Cf. A275556 Classes under translation, rotation, complement and reversal %Y A275549 Cf. A275557 Classes under rotation and complement %Y A275549 Cf. A275558 Classes under rotation, complement and reversal %Y A275549 Cf. A078707 Endofunctions symmetric around their middle (stable by reversal). %K A275549 nonn,easy %O A275549 0,3 %A A275549 _Olivier Gérard_, Aug 01 2016