This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275551 #10 Oct 01 2017 13:19:15 %S A275551 1,1,2,6,36,325,3924,58996,1049088,21526641,500010000,12968792826, %T A275551 371504434176,11649044974645,396857394156608,14596463098125000, %U A275551 576460752571858944,24330595941321312961,1092955779880368226560,52063675149116964615310,2621440000000512000000000 %N A275551 Number of classes of endofunctions of [n] under vertical translation mod n and reversal. %C A275551 There are two size of classes, n or 2n. %C A275551 n c:n c:2n (c:n)/n (c:2n)/n %C A275551 0 1 %C A275551 1 1 %C A275551 2 2 %C A275551 3 3 3 1 1 %C A275551 4 8 28 2 7 %C A275551 5 25 300 5 60 %C A275551 6 72 3852 12 642 %C A275551 7 343 58653 49 8379 %H A275551 Andrew Howroyd, <a href="/A275551/b275551.txt">Table of n, a(n) for n = 0..100</a> %e A275551 a(2) = 2: 11, 12. %e A275551 a(3) = 6: 111, 112, 113, 121, 123, 131. %e A275551 a(4) = 36: 1111, 1112, 1113, 1114, 1121, 1122, 1123, 1124, 1131, 1132, 1133, 1134, 1141, 1142, 1143, 1212, 1213, 1214, 1221, 1223, 1224, 1231, 1234, 1241, 1242, 1243, 1312, 1313, 1323, 1324, 1331, 1334, 1341, 1412, 1423, 1441. %o A275551 (PARI) \\ see A056391 for Polya enumeration functions %o A275551 a(n) = NonequivalentSorts(ReversiblePerms(n), CyclicPerms(n)); \\ _Andrew Howroyd_, Sep 30 2017 %Y A275551 Cf. A000312 All endofunctions %Y A275551 Cf. A000169 Classes under translation mod n %Y A275551 Cf. A001700 Classes under sort %Y A275551 Cf. A056665 Classes under rotation %Y A275551 Cf. A168658 Classes under complement to n+1 %Y A275551 Cf. A130293 Classes under translation and rotation %Y A275551 Cf. A081721 Classes under rotation and reversal %Y A275551 Cf. A275549 Classes under reversal %Y A275551 Cf. A275550 Classes under reversal and complement %Y A275551 Cf. A275552 Classes under translation and complement %Y A275551 Cf. A275553 Classes under translation, complement and reversal %Y A275551 Cf. A275554 Classes under translation, rotation and complement %Y A275551 Cf. A275555 Classes under translation, rotation and reversal %Y A275551 Cf. A275556 Classes under translation, rotation, complement and reversal %Y A275551 Cf. A275557 Classes under rotation and complement %Y A275551 Cf. A275558 Classes under rotation, complement and reversal %K A275551 nonn %O A275551 0,3 %A A275551 _Olivier Gérard_, Aug 02 2016 %E A275551 Terms a(8) and beyond from _Andrew Howroyd_, Sep 30 2017