This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275552 #13 Oct 07 2017 09:01:21 %S A275552 1,1,2,5,36,313,3904,58825,1048640,21523361,500000256,12968712301, %T A275552 371504186368,11649042561241,396857386631168,14596463012695313, %U A275552 576460752303439872,24330595937833434241,1092955779869348331520,52063675148955620766421,2621440000000000000262144 %N A275552 Number of classes of endofunctions of [n] under vertical translation mod n and complement to n+1. %C A275552 There are two size of classes, n or 2n. %C A275552 . %C A275552 n c:n c:2n (c:2n)/4 %C A275552 0 1 %C A275552 1 1 %C A275552 2 2 %C A275552 3 1 4 1 %C A275552 4 8 28 7 %C A275552 5 1 312 78 %C A275552 6 32 3872 968 %C A275552 7 1 58824 14706 %C A275552 For n odd, only the set of n constant functions can have a member of their class equal to their complement, so c:n size is 1. %C A275552 For n even, the c:n class is populated by binary words using k for 0 and n+1-k for 1. There are (2^n)/2 such words as the complement operation identifies them by pairs. %C A275552 For n odd, c:2n(n) = (n^n - 1*n)/(2*n) %C A275552 For n even, c:2n(n) = (n^n - 2^(n-1)*n)/(2*n) %H A275552 Andrew Howroyd, <a href="/A275552/b275552.txt">Table of n, a(n) for n = 0..100</a> %F A275552 a(n) = 1 + (n^n - 1*n)/(2*n) if n is odd, %F A275552 a(n) = 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n) if n is even. %t A275552 a[0] = 1; a[n_?OddQ] := 1 + (n^n - n)/(2n); a[n_?EvenQ] := 2^(n-1) + (n^n - 2^(n-1)*n)/(2n); Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Oct 07 2017, translated from PARI *) %o A275552 (PARI) a(n) = if(n%2, 1 + (n^n - 1*n)/(2*n), 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n)); \\ _Andrew Howroyd_, Sep 30 2017 %Y A275552 Cf. A000312 All endofunctions; %Y A275552 Cf. A000169 Classes under translation mod n; %Y A275552 Cf. A001700 Classes under sort; %Y A275552 Cf. A056665 Classes under rotation; %Y A275552 Cf. A168658 Classes under complement to n+1; %Y A275552 Cf. A130293 Classes under translation and rotation; %Y A275552 Cf. A081721 Classes under rotation and reversal; %Y A275552 Cf. A275549 Classes under reversal; %Y A275552 Cf. A275550 Classes under reversal and complement; %Y A275552 Cf. A275551 Classes under translation and reversal; %Y A275552 Cf. A275553 Classes under translation, complement and reversal; %Y A275552 Cf. A275554 Classes under translation, rotation and complement; %Y A275552 Cf. A275555 Classes under translation, rotation and reversal; %Y A275552 Cf. A275556 Classes under translation, rotation, complement and reversal; %Y A275552 Cf. A275557 Classes under rotation and complement; %Y A275552 Cf. A275558 Classes under rotation, complement and reversal. %K A275552 nonn,easy %O A275552 0,3 %A A275552 _Olivier Gérard_, Aug 02 2016