cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275552 Number of classes of endofunctions of [n] under vertical translation mod n and complement to n+1.

This page as a plain text file.
%I A275552 #13 Oct 07 2017 09:01:21
%S A275552 1,1,2,5,36,313,3904,58825,1048640,21523361,500000256,12968712301,
%T A275552 371504186368,11649042561241,396857386631168,14596463012695313,
%U A275552 576460752303439872,24330595937833434241,1092955779869348331520,52063675148955620766421,2621440000000000000262144
%N A275552 Number of classes of endofunctions of [n] under vertical translation mod n and complement to n+1.
%C A275552 There are two size of classes, n or 2n.
%C A275552 .
%C A275552 n   c:n  c:2n   (c:2n)/4
%C A275552 0   1
%C A275552 1   1
%C A275552 2   2
%C A275552 3   1    4      1
%C A275552 4   8    28     7
%C A275552 5   1    312    78
%C A275552 6   32   3872   968
%C A275552 7   1    58824  14706
%C A275552 For n odd, only the set of n constant functions can have a member of their class equal to their complement, so c:n size is 1.
%C A275552 For n even, the c:n class is populated by binary words using k for 0 and n+1-k for 1. There are (2^n)/2 such words as the complement operation identifies them by pairs.
%C A275552 For n odd, c:2n(n) = (n^n - 1*n)/(2*n)
%C A275552 For n even, c:2n(n) = (n^n - 2^(n-1)*n)/(2*n)
%H A275552 Andrew Howroyd, <a href="/A275552/b275552.txt">Table of n, a(n) for n = 0..100</a>
%F A275552 a(n) = 1 + (n^n - 1*n)/(2*n) if n is odd,
%F A275552 a(n) = 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n) if n is even.
%t A275552 a[0] = 1; a[n_?OddQ] := 1 + (n^n - n)/(2n); a[n_?EvenQ] := 2^(n-1) + (n^n - 2^(n-1)*n)/(2n); Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Oct 07 2017, translated from PARI *)
%o A275552 (PARI) a(n) = if(n%2, 1 + (n^n - 1*n)/(2*n), 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n)); \\ _Andrew Howroyd_, Sep 30 2017
%Y A275552 Cf. A000312 All endofunctions;
%Y A275552 Cf. A000169 Classes under translation mod n;
%Y A275552 Cf. A001700 Classes under sort;
%Y A275552 Cf. A056665 Classes under rotation;
%Y A275552 Cf. A168658 Classes under complement to n+1;
%Y A275552 Cf. A130293 Classes under translation and rotation;
%Y A275552 Cf. A081721 Classes under rotation and reversal;
%Y A275552 Cf. A275549 Classes under reversal;
%Y A275552 Cf. A275550 Classes under reversal and complement;
%Y A275552 Cf. A275551 Classes under translation and reversal;
%Y A275552 Cf. A275553 Classes under translation, complement and reversal;
%Y A275552 Cf. A275554 Classes under translation, rotation and complement;
%Y A275552 Cf. A275555 Classes under translation, rotation and reversal;
%Y A275552 Cf. A275556 Classes under translation, rotation, complement and reversal;
%Y A275552 Cf. A275557 Classes under rotation and complement;
%Y A275552 Cf. A275558 Classes under rotation, complement and reversal.
%K A275552 nonn,easy
%O A275552 0,3
%A A275552 _Olivier Gérard_, Aug 02 2016