This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275553 #7 Oct 01 2017 16:57:06 %S A275553 1,1,2,4,24,169,2024,29584,525600,10764961,250030128,6484436676, %T A275553 185752964096,5824523694025,198428723433728,7298231591777344, %U A275553 288230377359679488,12165297972404595841,546477889989773968640,26031837574639154232100,1310720000002816000131072 %N A275553 Number of classes of endofunctions of [n] under vertical translation mod n, complement to n+1 and reversal. %C A275553 There are three size of classes : n, 2n, 4n. %C A275553 n c:n c:2n c:4n %C A275553 ---------------------------------- %C A275553 0 1 %C A275553 1 1 %C A275553 2 2 %C A275553 3 1 2 1 %C A275553 4 4 10 10 %C A275553 5 1 24 144 %C A275553 6 8 148 1868 %C A275553 7 1 342 29241 %C A275553 For n odd, only the set of n constant functions can have a member of their class equal to their complement, so c:n size is 1. %C A275553 For n even, we have 2^(n/2) binary words which have mirror-symmetry %C A275553 There are three types of classes of size of 2n (stable by reversal, stable by complement, stable by rc as in A275550). %H A275553 Andrew Howroyd, <a href="/A275553/b275553.txt">Table of n, a(n) for n = 0..100</a> %o A275553 (PARI) \\ see A056391 for Polya enumeration functions %o A275553 a(n) = NonequivalentSorts(ReversiblePerms(n), DihedralPerms(n)); \\ _Andrew Howroyd_, Sep 30 2017 %Y A275553 Cf. A000312 All endofunctions %Y A275553 Cf. A000169 Classes under translation mod n %Y A275553 Cf. A001700 Classes under sort %Y A275553 Cf. A056665 Classes under rotation %Y A275553 Cf. A168658 Classes under complement to n+1 %Y A275553 Cf. A130293 Classes under translation and rotation %Y A275553 Cf. A081721 Classes under rotation and reversal %Y A275553 Cf. A275549 Classes under reversal %Y A275553 Cf. A275550 Classes under reversal and complement %Y A275553 Cf. A275551 Classes under translation and reversal %Y A275553 Cf. A275552 Classes under translation and complement %Y A275553 Cf. A275554 Classes under translation, rotation and complement %Y A275553 Cf. A275555 Classes under translation, rotation and reversal %Y A275553 Cf. A275556 Classes under translation, rotation, complement and reversal %Y A275553 Cf. A275557 Classes under rotation and complement %Y A275553 Cf. A275558 Classes under rotation, complement and reversal %K A275553 nonn %O A275553 0,3 %A A275553 _Olivier Gérard_, Aug 05 2016 %E A275553 Terms a(8) and beyond from _Andrew Howroyd_, Sep 30 2017