This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275554 #8 Oct 01 2017 16:57:51 %S A275554 1,1,2,3,14,65,680,8407,131416,2391515,50006040,1178973851, %T A275554 30958827996,896080197025,28346960490560,973097534189967, %U A275554 36028797169965112,1431211525754907905,60719765554419645244,2740193428892401092979,131072000000281600209176 %N A275554 Number of classes of endofunctions of [n] under vertical translation mod n, rotation and complement to n+1. %C A275554 Because of the interaction between the two symmetries indexed by n, classes can be of size from n up to 2*n^2. %C A275554 . %C A275554 n possible class sizes %C A275554 ------------------------------- %C A275554 1 1 %C A275554 2 2 %C A275554 3 3, 6, 18 %C A275554 4 4, 8, 16, 32 %C A275554 5 5, 10, 50 %C A275554 6 6, 12, 18, 24, 36, 72 %C A275554 7 7, 14, 98 %C A275554 . %C A275554 but classes of size 2*n^2 account for the bulk of a(n). %C A275554 n number of classes %C A275554 ----------------------------------- %C A275554 1 1 %C A275554 2 2 %C A275554 3 1, 1, 1 %C A275554 4 2, 3, 4, 5 %C A275554 5 1, 2, 62 %C A275554 6 2, 4, 2, 2, 48, 622 %C A275554 7 1, 3, 8403 %H A275554 Andrew Howroyd, <a href="/A275554/b275554.txt">Table of n, a(n) for n = 0..100</a> %o A275554 (PARI) \\ see A056391 for Polya enumeration functions %o A275554 a(n) = NonequivalentSorts(CyclicPerms(n), DihedralPerms(n)); \\ _Andrew Howroyd_, Sep 30 2017 %Y A275554 Cf. A000312 All endofunctions %Y A275554 Cf. A000169 Classes under translation mod n %Y A275554 Cf. A001700 Classes under sort %Y A275554 Cf. A056665 Classes under rotation %Y A275554 Cf. A168658 Classes under complement to n+1 %Y A275554 Cf. A130293 Classes under translation and rotation %Y A275554 Cf. A081721 Classes under rotation and reversal %Y A275554 Cf. A275549 Classes under reversal %Y A275554 Cf. A275550 Classes under reversal and complement %Y A275554 Cf. A275551 Classes under translation and reversal %Y A275554 Cf. A275552 Classes under translation and complement %Y A275554 Cf. A275553 Classes under translation, complement and reversal %Y A275554 Cf. A275555 Classes under translation, rotation and reversal %Y A275554 Cf. A275556 Classes under translation, rotation, complement and reversal %Y A275554 Cf. A275557 Classes under rotation and complement %Y A275554 Cf. A275558 Classes under rotation, complement and reversal %K A275554 nonn %O A275554 0,3 %A A275554 _Olivier Gérard_, Aug 02 2016 %E A275554 Terms a(8) and beyond from _Andrew Howroyd_, Sep 30 2017