This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275555 #9 Oct 01 2017 16:59:24 %S A275555 1,1,2,4,16,77,730,8578,132422,2394795,50031012,1179054376, %T A275555 30959574248,896082610429,28346986843640,973097619619654, %U A275555 36028798243701780,1431211529242786625,60719765604009463866,2740193429053744941868,131072000002841600036024 %N A275555 Number of classes of endofunctions of [n] under vertical translation mod n, rotation and reversal. %C A275555 Because of the interaction between the two symmetries indexed by n, classes can be of size from n up to 2*n^2. %C A275555 n possible class sizes %C A275555 ----------------------------------- %C A275555 1 1 %C A275555 2 2 %C A275555 3 3, 6, 9 %C A275555 4 4, 8, 16, 32 %C A275555 5 5, 10, 25, 50 %C A275555 6 6, 12, 18, 24, 36, 72 %C A275555 7 7, 14, 49, 98 %C A275555 but classes of size 2*n^2 account for the bulk of a(n). %C A275555 n number of classes %C A275555 ----------------------------------- %C A275555 1 1 %C A275555 2 2 %C A275555 3 1, 1, 2 %C A275555 4 2, 3, 8, 3 %C A275555 5 1, 2, 24, 50 %C A275555 6 2, 4, 10, 2, 136, 576 %C A275555 7 1, 3, 342, 8232 %H A275555 Andrew Howroyd, <a href="/A275555/b275555.txt">Table of n, a(n) for n = 0..100</a> %o A275555 (PARI) \\ see A056391 for Polya enumeration functions %o A275555 a(n) = NonequivalentSorts(DihedralPerms(n), CyclicPerms(n)); \\ _Andrew Howroyd_, Sep 30 2017 %Y A275555 Cf. A000312 All endofunctions %Y A275555 Cf. A000169 Classes under translation mod n %Y A275555 Cf. A001700 Classes under sort %Y A275555 Cf. A056665 Classes under rotation %Y A275555 Cf. A168658 Classes under complement to n+1 %Y A275555 Cf. A130293 Classes under translation and rotation %Y A275555 Cf. A081721 Classes under rotation and reversal %Y A275555 Cf. A275549 Classes under reversal %Y A275555 Cf. A275550 Classes under reversal and complement %Y A275555 Cf. A275551 Classes under translation and reversal %Y A275555 Cf. A275552 Classes under translation and complement %Y A275555 Cf. A275553 Classes under translation, complement and reversal %Y A275555 Cf. A275554 Classes under translation, rotation and complement %Y A275555 Cf. A275556 Classes under translation, rotation, complement and reversal %Y A275555 Cf. A275557 Classes under rotation and complement %Y A275555 Cf. A275558 Classes under rotation, complement and reversal %K A275555 nonn %O A275555 0,3 %A A275555 _Olivier Gérard_, Aug 05 2016 %E A275555 Terms a(8) and beyond from _Andrew Howroyd_, Sep 30 2017