This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275556 #7 Oct 01 2017 17:01:16 %S A275556 1,1,2,3,13,45,412,4375,66988,1199038,25033020,589567451,15480284910, %T A275556 448042511917,14173510363424,486548852524671,18014399792942108, %U A275556 715605766365332673,30359882832309625502,1370096714607544395379,65536000002956800104588 %N A275556 Number of classes of endofunctions of [n] under vertical translation mod n, rotation, complement to n+1 and reversal. %C A275556 Because of the interaction between the two symmetries indexed by n and the two involutions, classes can be of size from n up to 4*n^2. %C A275556 . %C A275556 n possible class sizes %C A275556 ------------------------------------ %C A275556 1 1 %C A275556 2 2 %C A275556 3 3, 6, 18 %C A275556 4 4, 8, 16, 32, 64 %C A275556 5 5, 10, 50, 100 %C A275556 6 6, 12, 18, 24, 36, 72, 144 %C A275556 7 7, 14, 98, 196 %C A275556 . %C A275556 but classes of size 4*n^2 account for the bulk of a(n). %C A275556 n number of classes %C A275556 ------------------------------------ %C A275556 1 1 %C A275556 2 2 %C A275556 3 1, 1, 1 %C A275556 4 2, 3, 4, 3, 1 %C A275556 5 1, 2, 22, 20 %C A275556 6 2, 4, 2, 2, 28, 116, 258 %C A275556 7 1, 3, 339, 4032 %H A275556 Andrew Howroyd, <a href="/A275556/b275556.txt">Table of n, a(n) for n = 0..100</a> %o A275556 (PARI) \\ see A056391 for Polya enumeration functions %o A275556 a(n) = NonequivalentSorts(DihedralPerms(n), DihedralPerms(n)); \\ _Andrew Howroyd_, Sep 30 2017 %Y A275556 Cf. A000312 All endofunctions %Y A275556 Cf. A000169 Classes under translation mod n %Y A275556 Cf. A001700 Classes under sort %Y A275556 Cf. A056665 Classes under rotation %Y A275556 Cf. A168658 Classes under complement to n+1 %Y A275556 Cf. A130293 Classes under translation and rotation %Y A275556 Cf. A081721 Classes under rotation and reversal %Y A275556 Cf. A275549 Classes under reversal %Y A275556 Cf. A275550 Classes under reversal and complement %Y A275556 Cf. A275551 Classes under translation and reversal %Y A275556 Cf. A275552 Classes under translation and complement %Y A275556 Cf. A275553 Classes under translation, complement and reversal %Y A275556 Cf. A275554 Classes under translation, rotation and complement %Y A275556 Cf. A275555 Classes under translation, rotation and reversal %Y A275556 Cf. A275557 Classes under rotation and complement %Y A275556 Cf. A275558 Classes under rotation, complement and reversal %K A275556 nonn %O A275556 0,3 %A A275556 _Olivier Gérard_, Aug 05 2016 %E A275556 Terms a(8) and beyond from _Andrew Howroyd_, Sep 30 2017