This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275557 #8 Oct 01 2017 16:51:42 %S A275557 1,1,2,6,38,315,3932,58828,1049108,21523445,500010024,12968712306, %T A275557 371504436220,11649042561247,396857394156656,14596463012746392, %U A275557 576460752571867208,24330595937833434249,1092955779880370116836,52063675148955620766430,2621440000000512000336088 %N A275557 Number of classes of endofunctions of [n] under rotation and complement to n+1. %C A275557 Classes can be of size 1,2,4, n and 2n. %C A275557 n 1 2 4 n 2n %C A275557 -------------------------- %C A275557 1 1 %C A275557 2 0 2 %C A275557 3 1 1 4 %C A275557 4 0 4 4 2 28 %C A275557 5 1 2 0 0 312 %C A275557 6 0 6 6 70 3850 %C A275557 7 1 3 0 0 58824 %C A275557 For n odd, the constant function (n+1)/2 is the only stable by rotation and complement. So #c1=1. %C A275557 For n even, there is no stable function, so #c1=0, but constant functions are grouped two by two making n/2 classes of size 2. Functions alternating a value and its complement are also grouped two by two, making another n/2 classes. This gives #c2=n. %H A275557 Andrew Howroyd, <a href="/A275557/b275557.txt">Table of n, a(n) for n = 0..100</a> %o A275557 (PARI) \\ see A056391 for Polya enumeration functions %o A275557 a(n) = NonequivalentSorts(CyclicPerms(n), ReversiblePerms(n)); \\ _Andrew Howroyd_, Sep 30 2017 %Y A275557 Cf. A000312 All endofunctions %Y A275557 Cf. A000169 Classes under translation mod n %Y A275557 Cf. A001700 Classes under sort %Y A275557 Cf. A056665 Classes under rotation %Y A275557 Cf. A168658 Classes under complement to n+1 %Y A275557 Cf. A130293 Classes under translation and rotation %Y A275557 Cf. A081721 Classes under rotation and reversal %Y A275557 Cf. A275549 Classes under reversal %Y A275557 Cf. A275550 Classes under reversal and complement %Y A275557 Cf. A275551 Classes under translation and reversal %Y A275557 Cf. A275552 Classes under translation and complement %Y A275557 Cf. A275553 Classes under translation, complement and reversal %Y A275557 Cf. A275554 Classes under translation, rotation and complement %Y A275557 Cf. A275555 Classes under translation, rotation and reversal %Y A275557 Cf. A275556 Classes under translation, rotation, complement and reversal %Y A275557 Cf. A275558 Classes under rotation, complement and reversal %K A275557 nonn %O A275557 0,3 %A A275557 _Olivier Gérard_, Aug 05 2016 %E A275557 Terms a(8) and beyond from _Andrew Howroyd_, Sep 30 2017