This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275558 #9 Oct 01 2017 17:02:02 %S A275558 1,1,2,6,31,195,2182,30100,529674,10778125,250155012,6484839306, %T A275558 185757443582,5824538174455,198428907905336,7298232189810696, %U A275558 288230385949610020,12165298000307625609,546477890436083284338,26031837576091248872110,1310720000028416000168044 %N A275558 Number of classes of endofunctions of [n] under rotation, complement to n+1 and reversal. %C A275558 Classes can be of size 1,2,4, n, 2n or 4n. %C A275558 . %C A275558 n 1 2 4 n 2n 4n %C A275558 --------------------------------- %C A275558 1 1 %C A275558 2 0 2 %C A275558 3 1 1 4 %C A275558 4 0 4 4 0 17 6 %C A275558 5 1 2 0 0 72 120 %C A275558 6 0 6 6 30 410 1730 %C A275558 7 1 3 0 0 1368 28728 %C A275558 . %C A275558 For n odd, the constant function (n+1)/2 is the only stable by rotation, complement and reversal. So #c1=1. %C A275558 For n even, there is no stable function, so #c1=0, but constant functions are grouped two by two making n/2 classes of size 2. Functions alternating a value and its complement are also grouped two by two, making another n/2 classes. This gives #c2=n. %H A275558 Andrew Howroyd, <a href="/A275558/b275558.txt">Table of n, a(n) for n = 0..100</a> %o A275558 (PARI) \\ see A056391 for Polya enumeration functions %o A275558 a(n) = NonequivalentSorts(DihedralPerms(n), ReversiblePerms(n)); \\ _Andrew Howroyd_, Sep 30 2017 %Y A275558 Cf. A000312 All endofunctions %Y A275558 Cf. A000169 Classes under translation mod n %Y A275558 Cf. A001700 Classes under sort %Y A275558 Cf. A056665 Classes under rotation %Y A275558 Cf. A168658 Classes under complement to n+1 %Y A275558 Cf. A130293 Classes under translation and rotation %Y A275558 Cf. A081721 Classes under rotation and reversal %Y A275558 Cf. A275549 Classes under reversal %Y A275558 Cf. A275550 Classes under reversal and complement %Y A275558 Cf. A275551 Classes under translation and reversal %Y A275558 Cf. A275552 Classes under translation and complement %Y A275558 Cf. A275553 Classes under translation, complement and reversal %Y A275558 Cf. A275554 Classes under translation, rotation and complement %Y A275558 Cf. A275555 Classes under translation, rotation and reversal %Y A275558 Cf. A275556 Classes under translation, rotation, complement and reversal %Y A275558 Cf. A275557 Classes under rotation and complement %K A275558 nonn %O A275558 0,3 %A A275558 _Olivier Gérard_, Aug 05 2016 %E A275558 Terms a(8) and beyond from _Andrew Howroyd_, Sep 30 2017