A275561 Number of n X 4 0..2 arrays with no element equal to any value at offset (-2,0) (-1,2) or (0,-2) and new values introduced in order 0..2.
6, 96, 294, 1176, 4056, 15000, 54150, 196566, 714150, 2589894, 9405024, 34129350, 123887616, 449661894, 1632114294, 5924052504, 21502190976, 78045783606, 283279234776, 1028207094936, 3732040069656, 13546029168150, 49167456532134
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..2..0. .0..0..1..2. .0..0..1..1. .0..1..2..0. .0..1..2..0 ..0..2..1..1. .0..0..1..1. .0..0..1..2. .1..2..0..0. .1..1..0..2 ..2..2..0..1. .2..2..0..0. .2..1..0..0. .2..2..0..1. .2..0..1..2 ..2..0..0..2. .1..1..0..2. .1..2..0..1. .2..0..1..2. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A275565.
Formula
Empirical: a(n) = 3*a(n-1) + 5*a(n-2) - 8*a(n-3) - 11*a(n-4) + 17*a(n-5) - 4*a(n-6) - 6*a(n-7) + 3*a(n-8) + 2*a(n-9) - a(n-10) for n>11.
Empirical g.f.: 6*x*(1 + 13*x - 4*x^2 - 23*x^3 - 18*x^4 + 43*x^5 - 16*x^6 - 13*x^7 + 10*x^8 + 5*x^9 - 3*x^10) / ((1 - 5*x + 6*x^2 - 4*x^3 + x^4)*(1 + 2*x - x^2 - 5*x^3 - x^4 + 2*x^5 + x^6)). - Colin Barker, Feb 04 2019