A275566 Number of 3 X n 0..2 arrays with no element equal to any value at offset (-2,0) (-1,2) or (0,-2) and new values introduced in order 0..2.
3, 54, 126, 294, 672, 1536, 3552, 8214, 19092, 44376, 103200, 240000, 558000, 1297350, 3015990, 7011366, 16299318, 37891014, 88085676, 204773784, 476041212, 1106661366, 2572675992, 5980747104, 13903551072, 32321836896, 75139155000
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..1. .0..1..2..0. .0..1..2..0. .0..0..1..1. .0..1..2..0 ..2..0..0..2. .1..2..2..0. .0..2..2..1. .0..2..2..0. .1..2..0..1 ..1..1..2..2. .1..2..0..1. .1..2..0..1. .1..1..0..2. .2..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A275565.
Formula
Empirical: a(n) = 3*a(n-1) - 5*a(n-3) + a(n-4) + 7*a(n-5) - 5*a(n-6) + 2*a(n-8) - a(n-9) for n>10.
Empirical g.f.: 3*x*(1 + 15*x - 12*x^2 - 23*x^3 + 19*x^4 + 25*x^5 - 25*x^6 + 4*x^7 + 8*x^8 - 5*x^9) / ((1 - 3*x + 2*x^2 - x^3)*(1 - 2*x^2 + 3*x^4 - x^6)). - Colin Barker, Feb 04 2019