cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275568 Number of 5Xn 0..2 arrays with no element equal to any value at offset (-2,0) (-1,2) or (0,-2) and new values introduced in order 0..2.

This page as a plain text file.
%I A275568 #4 Aug 01 2016 21:30:48
%S A275568 12,864,1872,4056,13104,42336,138600,453750,1506450,5001414,16784592,
%T A275568 56328576,190035408,641121414,2165870262,7316857446,24718829850,
%U A275568 83508603750,282120696000,953100441600,3220293856320,10880587258614
%N A275568 Number of 5Xn 0..2 arrays with no element equal to any value at offset (-2,0) (-1,2) or (0,-2) and new values introduced in order 0..2.
%C A275568 Row 5 of A275565.
%H A275568 R. H. Hardin, <a href="/A275568/b275568.txt">Table of n, a(n) for n = 1..210</a>
%F A275568 Empirical: a(n) = 7*a(n-1) +7*a(n-2) -153*a(n-3) +128*a(n-4) +1661*a(n-5) -2987*a(n-6) -11147*a(n-7) +31265*a(n-8) +44933*a(n-9) -209769*a(n-10) -65464*a(n-11) +988481*a(n-12) -428751*a(n-13) -3404950*a(n-14) +3691505*a(n-15) +8623905*a(n-16) -16041975*a(n-17) -15201775*a(n-18) +49315575*a(n-19) +13559611*a(n-20) -116797842*a(n-21) +18028343*a(n-22) +220372013*a(n-23) -106427533*a(n-24) -335355156*a(n-25) +260460612*a(n-26) +411365412*a(n-27) -446068765*a(n-28) -401412528*a(n-29) +590037487*a(n-30) +301637628*a(n-31) -624695552*a(n-32) -161284890*a(n-33) +539917211*a(n-34) +45168922*a(n-35) -388786164*a(n-36) +14654711*a(n-37) +240717215*a(n-38) -29174529*a(n-39) -133749307*a(n-40) +24747125*a(n-41) +68598600*a(n-42) -17271849*a(n-43) -31876238*a(n-44) +10697884*a(n-45) +12697117*a(n-46) -5593463*a(n-47) -4068750*a(n-48) +2346552*a(n-49) +972250*a(n-50) -764373*a(n-51) -148698*a(n-52) +187979*a(n-53) +5357*a(n-54) -33466*a(n-55) +3817*a(n-56) +3912*a(n-57) -1040*a(n-58) -228*a(n-59) +129*a(n-60) -6*a(n-61) -6*a(n-62) +a(n-63) for n>66
%e A275568 Some solutions for n=4
%e A275568 ..0..1..2..2. .0..1..2..2. .0..0..1..2. .0..1..1..2. .0..1..2..2
%e A275568 ..1..1..0..0. .1..0..0..1. .2..1..1..2. .2..1..0..0. .1..1..0..2
%e A275568 ..1..2..0..1. .2..2..1..1. .2..1..0..0. .1..2..0..0. .1..0..0..1
%e A275568 ..2..0..1..2. .0..2..2..0. .1..2..0..0. .1..2..2..1. .2..2..1..0
%e A275568 ..0..0..2..2. .0..1..2..2. .1..2..2..1. .0..0..2..2. .0..1..2..0
%Y A275568 Cf. A275565.
%K A275568 nonn
%O A275568 1,1
%A A275568 _R. H. Hardin_, Aug 01 2016