This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275579 #24 Sep 10 2018 06:10:02 %S A275579 2,3,4,5,5,6,7,7,8,8,8,9,9,10,10,11,11,11,12,12,13,13,13,14,14,15,15, %T A275579 15,16,16,17,17,17,18,18,18,18,19,19,20,20,20,21,21,21,21,22,22,22,23, %U A275579 23,23,24,24,24,25,25,25,26,26 %N A275579 Nearest integer to imaginary part of Riemann zeta zeros divided by 2*Pi. %C A275579 This sequence never increases by more than 1. The first differences are given by A275737 starting: 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, ... %H A275579 G. C. Greubel, <a href="/A275579/b275579.txt">Table of n, a(n) for n = 1..10000</a> %H A275579 Guilherme França, André LeClair, <a href="https://arxiv.org/abs/1307.8395">Statistical and other properties of Riemann zeros based on an explicit equation for the n-th zero on the critical line</a>, arXiv:1307.8395 [math.NT], 2013-2014, page 13, formula (25). %F A275579 a(n) = round(im(zetazero(n))/(2*Pi)) = round(A002410(n)/(2*Pi)). %F A275579 a(n) ~ (n - 11/8)/LambertW(exp(1)^(-1)*(n - 11/8)) (This is the Franca LeClair asymptotic at page 13, formula (25).) %t A275579 Table[Round[Im[ZetaZero[n]]/(2*Pi)], {n, 1, 60}] %Y A275579 Cf. A199499, A046654, A275341, A275737. %K A275579 nonn %O A275579 1,1 %A A275579 _Mats Granvik_, Aug 02 2016