This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275594 #13 Jul 22 2017 12:55:21 %S A275594 1,1,1,1,2,6,24,144,1464,26808,935184,67404816,10401844896, %T A275594 3508019017056,2732681228689152,5018025242941566336, %U A275594 21914759744001662937984,238559201308551667344338304,6565759935393013059564090526464 %N A275594 Shifts 3 places left under MNL transform. %C A275594 Shifts three places left under MNL transform, see A274760. %C A275594 The Maple program is based on a program by Alois P. Heinz, see A007548 and A274804. %H A275594 M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some Canonical Sequences of Integers</a> Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version] %H A275594 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %p A275594 mnltr:= proc(p) local g; g:= proc(n) option remember; `if` (n=0, 1, add(((n-1)!/(n-k)!)*p(k) *g(n-k), k=1..n)): end: end: d := mnltr(c): c := n->`if`(n<=3, 1, d(n-3)): A275594 := n-> c(n): seq(A275594(n), n=1..19); %t A275594 mnltr[p_] := Module[{g}, g[n_] := g[n] = If [n == 0, 1, Sum[((n-1)!/(n-k)!) *p[k]*g[n-k], {k, 1 n}]]; g]; d = mnltr[c]; c [n_] := If[n <= 3, 1, d[n - 3]]; A275594[n_] := c[n]; Table[A275594[n], {n, 1, 19}] (* _Jean-François Alcover_, Jul 22 2017, translated from Maple *) %Y A275594 Cf. A274760, A007548, A274804, A132039, A275593. %K A275594 nonn,eigen %O A275594 1,5 %A A275594 _Johannes W. Meijer_, Aug 03 2016