cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275633 Andrews's shadow difference function D_3(q).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 4, 7, 10, 16, 20, 31, 41, 56, 74, 101, 129, 172, 219, 284, 363, 464, 581, 738, 924, 1155, 1435, 1785, 2199, 2717, 3332, 4084, 4987, 6076, 7375, 8949, 10817, 13051, 15706, 18877, 22622, 27078, 32332, 38545, 45870, 54496, 64618, 76525, 90463, 106788, 125863, 148145, 174106
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Comments

Agrees with A237833 just for n <= 21.

Crossrefs

Programs

  • Maple
    F:=(a,q,n)->mul(1-a*q^i,i=0..n-1); # This is (a;q)_n
    M:=15;
    # A098151:
    THETA3:=(add((-1)^n*q^(3*n^2),n=-M..M)) /(add((-1)^n*q^(n^2),n=-M..M));
    s1:=series(THETA3,q,80); seriestolist(%);
    # A275632:
    THETABAR3:=1+2*add( (F(q,q,n-1)*q^(n^2)) / (F(q^n,q,n)*(1-q^n)), n=1..M);
    s2:=series(THETABAR3,q,80); seriestolist(%);
    # A275633:
    series((s1-s2)/8,q,80); seriestolist(%);

Formula

Equals (A098151-A275632)/8.