cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275639 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=5.

This page as a plain text file.
%I A275639 #18 Oct 06 2017 04:28:44
%S A275639 1,-4,7,-7,5,-4,4,-4,5,-7,8,-8,9,-11,12,-11,9,-8,9,-11,13,-15,16,-15,
%T A275639 14,-15,16,-15,14,-15,17,-19,21,-22,21,-19,18,-19,21,-22,22,-23,25,
%U A275639 -26,26,-26,25,-23,23,-26,29,-30,30,-30,30,-30,30,-30,30,-30,31,-34,37,-37,35,-34,34,-34,35
%N A275639 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=5.
%H A275639 Colin Barker, <a href="/A275639/b275639.txt">Table of n, a(n) for n = 0..1000</a>
%H A275639 A. M. Odlyzko, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa49/aa4932.pdf">Differences of the partition function</a>, Acta Arithmetica 49.3 (1988): 237-254.
%H A275639 Dennis Stanton and Doron Zeilberger, <a href="https://doi.org/10.1090/S0002-9939-1989-0972238-1">The Odlyzko conjecture and O’Hara’s unimodality proof</a>, Proceedings of the American Mathematical Society 107.1 (1989): 39-42.
%H A275639 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (-4,-9,-15,-20,-22,-20,-15,-9,-4,-1)
%F A275639 Equivalent g.f.: 1 / ((1+x)^2*(1+x^2)*(1+x+x^2)*(1+x+x^2+x^3+x^4)). - _Colin Barker_, Aug 10 2016
%F A275639 a(n) = -4*a(n-1) - 9*a(n-2) - 15*a(n-3) - 20*a(n-4) - 22*a(n-5) - 20*a(n-6) - 15*a(n-7) - 9*a(n-8) - 4*a(n-9) - a(n-10). - _Ilya Gutkovskiy_, Aug 10 2016
%o A275639 (PARI) Vec(1/((1+x)^2*(1+x^2)*(1+x+x^2)*(1+x+x^2+x^3+x^4)) + O(x^100)) \\ _Colin Barker_, Aug 11 2016
%Y A275639 Cf. A275638.
%K A275639 sign,easy
%O A275639 0,2
%A A275639 _N. J. A. Sloane_, Aug 09 2016