cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275643 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=12.

This page as a plain text file.
%I A275643 #8 Oct 06 2017 04:29:09
%S A275643 1,-11,56,-175,376,-592,719,-722,678,-696,815,-988,1143,-1254,1374,
%T A275643 -1602,1986,-2440,2794,-2971,3095,-3378,3906,-4562,5147,-5568,5937,
%U A275643 -6487,7336,-8317,9111,-9601,10048,-10852,12146,-13656,14954,-15853,16601,-17692,19402,-21465,23298,-24631,25843,-27577
%N A275643 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=12.
%H A275643 A. M. Odlyzko, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa49/aa4932.pdf">Differences of the partition function</a>, Acta Arithmetica 49.3 (1988): 237-254.
%H A275643 Dennis Stanton and Doron Zeilberger, <a href="https://doi.org/10.1090/S0002-9939-1989-0972238-1">The Odlyzko conjecture and O’Hara’s unimodality proof</a>, Proceedings of the American Mathematical Society 107.1 (1989): 39-42.
%Y A275643 Cf. A275638.
%K A275643 sign
%O A275643 0,2
%A A275643 _N. J. A. Sloane_, Aug 09 2016