cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275675 Number of ordered ways to write n as 4^k*(1+x^2+y^2)+5*z^2, where k,x,y,z are nonnegative integers with x <= y.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 3, 2, 2, 3, 2, 4, 1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3, 1, 3, 3, 2, 1, 2, 1, 5, 3, 2, 2, 3, 4, 1, 4, 2, 3, 5, 2, 2, 3, 1, 3, 3, 1, 4, 2, 4, 1, 2, 3, 2, 6, 2, 3, 3, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 04 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
This is stronger than the known fact that any natural number can be written as w^2 + x^2 + y^2 + 5*z^2 with w,x,y,z integers.
See also A275656, A275676 and A275678 for similar conjectures.

Examples

			a(43) = 1 since 43 = 4^0*(1+1^2+6^2) + 5*1^2.
a(45) = 1 since 45 = 4*(1+0^2+3^2) + 5*1^2.
a(237) = 1 since 237 = 4^3*(1+1^2+1^2) + 5*3^2.
a(561) = 1 since 561 = 4*(1+8^2+8^2) + 5*3^2.
a(9777) = 1 since 9777 = 4*(1+11^2+31^2) + 5*33^2.
a(39108) = 1 since 39108 = 4^2*(1+11^2+31^2) + 5*66^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[(n-4^k*(1+x^2+y^2))/5],r=r+1],{k,0,Log[4,n]},{x,0,Sqrt[(n/4^k-1)/2]},{y,x,Sqrt[n/4^k-1-x^2]}];Print[n," ",r];Continue,{n,1,80}]