This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275698 #40 Oct 23 2023 01:50:55 %S A275698 2,5,13,133,17293,298995973,89398590973228813, %T A275698 7992108067998667938125889533702533, %U A275698 63873791370569400659097694858350356285036046451665934814399129508493 %N A275698 a(0) = 2, after that a(n) is 3 plus the least common multiple of previous terms. %C A275698 This sequence could be considered a particular case of a possible two-parameter family of sequences of the form: a(n) = k1 + lcm(a(0),a(1),..,a(n-1)), a(0) = k2, where in this case k1=3 and k2=2. With other choices of k1 and k2 it seems it is possible to generate other sequences such as %C A275698 A129871 with k1 = 1 and k2 = 1, %C A275698 A000058 with k1 = 1 and k2 = 2, %C A275698 A082732 with k1 = 1 and k2 = 3, %C A275698 A000215 with k1 = 2 and k2 = 3, %C A275698 A000324 with k1 = 4 and k2 = 1, %C A275698 A001543 with k1 = 5 and k2 = 1, %C A275698 A001544 with k1 = 6 and k2 = 1, %C A275698 A275664 with k1 = 2 and k2 = 2, %C A275698 A000289 with k1 = 3 and k2 = 1. %H A275698 S. W. Golomb, <a href="http://www.jstor.org/stable/2311857">On certain nonlinear recurring sequences</a>, Amer. Math. Monthly 70 (1963), 403-405. %H A275698 S. Mustonen, <a href="http://www.survo.fi/papers/resseq.pdf">On integer sequences with mutual k-residues</a> %H A275698 Seppo Mustonen, <a href="/A000215/a000215.pdf">On integer sequences with mutual k-residues</a> [Local copy] %F A275698 a(n) = 3 + lcm(a(0), a(1), ..., a(n - 1)), a(0) = 2. %F A275698 a(n) = 3 + a(n-1)*(a(n-1)-3), for n > 1. - _Christian Krause_, Oct 17 2023. Proof: Follows from associativity of lcm(...) and the fact that gcd(m,m+3)=1: %F A275698 a(n)-3 = lcm(a(0),a(1),...,a(n-2),a(n-1)) %F A275698 = lcm(lcm(a(0),a(1),...,a(n-2)),a(n-1)) %F A275698 = lcm(a(n-1)-3,a(n-1)) %F A275698 = (a(n-1)-3)*a(n-1). %t A275698 A275698 = {2}; Do[AppendTo[A275698, 3 + LCM@@A275698], {i, 9}]; A275698 %Y A275698 Cf. A000058, A000215, A000289, A000324, A001543, A001544, A082732, A275664. %K A275698 nonn %O A275698 0,1 %A A275698 _Andres Cicuttin_, Aug 05 2016