This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275700 #19 Mar 23 2024 08:29:27 %S A275700 2,6,10,42,22,390,34,798,230,1914,62,101010,82,4386,5170,42294,118, %T A275700 547170,134,951258,12410,14694,166,170807910,2134,24846,23690,3285114, %U A275700 218,660741510,254,5540514,42470,49206,55726,21399271530,314,65526,68470,3126785046,358 %N A275700 a(n) = Product_{d|n} prime(d). %C A275700 a(n) mod n = 0 for n: 1, 2, 6, 30, 78, 330, 390, 870, 1410, 3198, ... %e A275700 a(4) = 42 because the divisors of 4 are: 1, 2 and 4; and prime(1) * prime(2) * prime(4) = 2 * 3 * 7 = 42. %t A275700 Table[Times@@(Prime[#]&/@Divisors[n]),{n,50}] (* _Harvey P. Dale_, Jun 16 2017 *) %o A275700 (Magma) [(&*[NthPrime(d): d in Divisors(n)]): n in [1..100]] %o A275700 (PARI) a(n) = my(d=divisors(n)); prod(i=1, #d, prime(d[i])) \\ _Felix Fröhlich_, Aug 05 2016 %o A275700 (Perl) use ntheory ":all"; sub a275700 { vecprod(map { nth_prime($_) } divisors($_[0])); } # _Dana Jacobsen_, Aug 09 2016 %Y A275700 Cf. A007445 (Sum_{d|n} prime(d)). %Y A275700 A version for binary indices is A034729. %Y A275700 Partitions of this type are counted by A054973, strict case of A371284. %Y A275700 The sorted version is A371283, squarefree case of A371288. %Y A275700 These numbers have products A371286, unsorted version A371285. %Y A275700 A000005 counts divisors, row-lengths of A027750. %Y A275700 A027746 lists prime factors, indices A112798, length A001222. %Y A275700 Cf. A000720, A001221, A005179, A007416. %K A275700 nonn %O A275700 1,1 %A A275700 _Jaroslav Krizek_, Aug 05 2016