This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275714 #26 Aug 16 2021 13:55:14 %S A275714 1,0,1,0,1,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,4,0,1,0,1,7,3,1,0,1,0,9,0, %T A275714 1,0,1,0,0,0,1,0,1,35,43,0,0,1,0,1,62,102,0,0,1,0,1,0,0,0,0,0,1,0,1,0, %U A275714 595,0,68,0,1,0,1,361,1480,871,187,17,0,1 %N A275714 Number T(n,k) of set partitions of [n] into k blocks with equal element sum; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows. %H A275714 Alois P. Heinz, <a href="/A275714/b275714.txt">Rows n = 0..34, flattened</a> %H A275714 Dorin Andrica and Ovidiu Bagdasar, <a href="https://doi.org/10.1007/s11139-021-00418-7">On k-partitions of multisets with equal sums</a>, The Ramanujan J. (2021) Vol. 55, 421-435. %H A275714 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A275714 T(8,1) = 1: 12345678. %e A275714 T(8,2) = 7: 12348|567, 12357|468, 12456|378, 1278|3456, 1368|2457, 1458|2367, 1467|2358. %e A275714 T(8,3) = 3: 1236|48|57, 138|246|57, 156|237|48. %e A275714 T(8,4) = 1: 18|27|36|45. %e A275714 T(9,3) = 9: 12345|69|78, 1239|456|78, 1248|357|69, 1257|348|69, 1347|258|69, 1356|249|78, 159|2346|78, 168|249|357, 159|267|348. %e A275714 Triangle T(n,k) begins: %e A275714 00 : 1; %e A275714 01 : 0, 1; %e A275714 02 : 0, 1; %e A275714 03 : 0, 1, 1; %e A275714 04 : 0, 1, 1; %e A275714 05 : 0, 1, 0, 1; %e A275714 06 : 0, 1, 0, 1; %e A275714 07 : 0, 1, 4, 0, 1; %e A275714 08 : 0, 1, 7, 3, 1; %e A275714 09 : 0, 1, 0, 9, 0, 1; %e A275714 10 : 0, 1, 0, 0, 0, 1; %e A275714 11 : 0, 1, 35, 43, 0, 0, 1; %e A275714 12 : 0, 1, 62, 102, 0, 0, 1; %e A275714 13 : 0, 1, 0, 0, 0, 0, 0, 1; %e A275714 14 : 0, 1, 0, 595, 0, 68, 0, 1; %e A275714 15 : 0, 1, 361, 1480, 871, 187, 17, 0, 1; %t A275714 Needs["Combinatorica`"]; T[n_, k_] := Count[(Equal @@ (Total /@ #)&) /@ KSetPartitions[n, k], True]; Table[row = Table[T[n, k], {k, 0, Ceiling[n/2]}]; Print[n, " ", row]; row, {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jan 20 2017 *) %Y A275714 Columns k=0-5 give: A000007, A000012 (for n>0), A058377, A112972, A317806, A317807. %Y A275714 Row sums give A035470 = 1 + A112956. %Y A275714 T(n^2,n) gives A321282. %Y A275714 Cf. A248112. %K A275714 nonn,tabf %O A275714 0,22 %A A275714 _Alois P. Heinz_, Aug 06 2016