A275738 Number of ordered ways to write n as w^2 + x^2*(1+y^2+z^2), where w,x,y,z are nonnegative integers with x > 0, y <= z and y == z (mod 2).
1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 1, 3, 4, 1, 1, 2, 3, 3, 2, 5, 5, 1, 1, 1, 5, 3, 3, 5, 3, 2, 2, 1, 2, 4, 2, 7, 7, 1, 2, 3, 5, 3, 2, 3, 8, 3, 1, 3, 4, 4, 3, 9, 6, 3, 3, 1, 4, 4, 1, 6, 5, 2, 3, 2, 5, 3, 3, 5, 8, 3, 1, 3, 7, 4, 4, 8, 4, 2, 2, 5
Offset: 1
Keywords
Examples
a(2) = 1 since 2 = 1^2 + 1^2*(1+0^2+0^2) with 0 + 0 even. a(7) = 1 since 7 = 2^2 + 1^2*(1+1^2+1^2) with 1 + 1 even. a(59) = 1 since 59 = 0^2 + 1^2*(1+3^2+7^2) with 3 + 7 even. a(71) = 1 since 71 = 6^2 + 1^2*(1+3^2+5^2) with 3 + 5 even. a(113) = 2 since 113 = 7^2 + 8^2*(1+0^2+0^2) = 8^2 + 7^2*(1+0^2+0^2) with 0 + 0 even. a(143) = 1 since 143 = 6^2 + 1^2*(1+5^2+9^2) with 5 + 9 even. a(191) = 1 since 191 = 10^2 + 1^2*(1+3^2+9^2) with 3 + 9 even. a(449) = 3 since 449 = 18^2 + 5^2*(1+0^2+2^2) with 0 + 2 even, and 449 = 7^2 + 20^2*(1+0^2+0^2) = 20^2 + 7^2*(1+0^2+0^2) with 0 + 0 even. a(497) = 1 since 497 = 15^2 + 4^2*(1+0^2+4^2) with 0 + 4 even. a(2033) = 1 since 2033 = 33^2 + 4^2*(1+3^2+7^2) with 3 + 7 even.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.NT], 2016-2017.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190, 2017.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2*(1+2y^2+2z^2)],r=r+1],{x,1,Sqrt[n]},{y,0,Sqrt[(n/x^2-1)/4]},{z,y,Sqrt[(n/x^2-1-2y^2)/2]}];Print[n," ",r];Continue,{n,1,80}]
Comments