This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275739 #17 Aug 17 2023 08:17:32 %S A275739 617,1723,2731,3191,6547,11087,13103,21683,21839,47737,49727,49739, %T A275739 51679,52361,60679,63719,117721,133169,145531,232681,275183,281353, %U A275739 306431,341879,373463,607319,700883,807241,1212119,1240559,1281331,1292927,1353239,1410361,1602451,1679599,2236907 %N A275739 The set S of primes q satisfying certain conditions (see Müller, 2010 for precise definition). %C A275739 Primes q satisfying conditions (18) and (19) on page 1179 of Müller, 2010. The values are given in section 3.2.2 on page 1179. %C A275739 Let E be the elliptic curve y^2 = x^3 - 3500*x - 98000, and P the point (84, 448) on E. Then these are exactly the primes q satisfying the following four conditions: (i) there exists a point Q in E(F_q) such that 2*Q = P in E(F_q), (ii) the 2-adic valuation of the order of P in E(F_q) equals 1, (iii) there exists a point of order 4 in E(F_q), (iv) the order of P in E(F_q) divides 17272710. Here, E(F_q) denotes the reduction of the elliptic curve E over the finite field of order q. - _Robin Visser_, Aug 16 2023 %H A275739 S. Müller, <a href="http://dx.doi.org/10.1090/S0025-5718-09-02275-3">On the existence and non-existence of elliptic pseudoprimes</a>, Mathematics of Computation, Vol. 79, No. 270 (2010), 1171-1190. %o A275739 (Sage) %o A275739 for q in range(11, 100000): %o A275739 if Integer(q).is_prime(): %o A275739 E = EllipticCurve(GF(q), [-3500, -98000]) %o A275739 P, od = E(84,448), E(84,448).order() %o A275739 if ((17272710%od == 0) and (od.valuation(2) == 1) %o A275739 and (E.abelian_group().exponent()%4 == 0)): %o A275739 for Q in E: %o A275739 if (2*Q == P): %o A275739 print(q) %o A275739 break # _Robin Visser_, Aug 16 2023 %K A275739 nonn %O A275739 1,1 %A A275739 _Felix Fröhlich_, Aug 07 2016 %E A275739 More terms from _Robin Visser_, Aug 16 2023