This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275762 #31 Mar 07 2025 06:34:00 %S A275762 2,-1,2,-4,7,-12,22,-41,74,-133,243,-444,806,-1465,2669,-4859,8840, %T A275762 -16087,29282,-53296,96994,-176527,321290,-584755,1064251,-1936952, %U A275762 3525296,-6416092,11677369,-21252993,38680798,-70399646,128128414,-233195704,424419826,-772450633,1405872057,-2558708924,4656889892,-8475611623,15425744240,-28075093283,51097104306,-92997520459,169256926243,-308050225082,560656176744,-1020402917484,1857149100126,-3380040101304,6151725289638 %N A275762 G.f.: 2 - x/(1+2*x - x^3/(1+2*x^2 - x^5/(1+2*x^3 - x^7/(1+2*x^4 - x^9/(1+2*x^5 - x^11/(1 - ...)))))), a continued fraction. %C A275762 a(n) ~ c/r^n, where r = -0.54944587773859960333406076695895194626366374257497442830... and c = 0.6098779103867259353642411483841966048261178594794555738... %C A275762 The g.f. of related triangle A275760 satisfies: G(x,y) = x*y + 1/G(x,x*y) with G(0,y) = 1. %H A275762 Seiichi Manyama, <a href="/A275762/b275762.txt">Table of n, a(n) for n = 0..3842</a> (terms 0..500 from Paul D. Hanna) %F A275762 Equals the diagonal sums of the irregular triangle A275760. %F A275762 G.f.: 1/F(x) + 1, where F(x) is the g.f. of A275761, the row sums of triangle A275760. %F A275762 G.f.: G(x,1/x), where G(x,y) = x*y + 1/G(x,x*y) with G(0,y) = 1, where G(x,y) is the g.f. of A275760. %F A275762 G.f.: 2 - x/(1+x + x/(1+x^2 - x^4/(1+x^3 + x^2/(1+x^4 - x^7/(1+x^5 + x^3/(1+x^6 - x^10/(1+x^7 + x^4/(1+x^8 - x^13/(1+x^9 + x^5/(1+x^10 - x^16/(1 + ...))))))))))), a continued fraction. %F A275762 G.f.: 1/(1 - 1/(1 + (1+x) - x^2/(1 + x*(1+x) - x^4/(1 + x^2*(1+x) - x^6/(1 + x^3*(1+x) - x^8/(1 + x^4*(1+x) - x^10/(1 + x^5*(1+x) - x^12/(1 - ...)))))))), a continued fraction. %F A275762 G.f.: 1/(1 - 1/(1+x + 1/(1+x^2 - x^3/(1+x^3 + x/(1+x^4 - x^6/(1+x^5 + x^2/(1+x^6 - x^9/(1+x^7 + x^3/(1+x^8 - x^12/(1+x^9 + x^4/(1+x^10 - x^15/(1 + ...)))))))))))), a continued fraction. %F A275762 G.f.: 1 + 1/(1 + x/(1 + x/(1 + x^2/(1 + x^2/(1 + x^3/(1 + x^3/(1 + ...))))))) since the odd part of this continued fraction equals the defining continued fraction given above. Cf. A006958 and A227309. - _Peter Bala_, Oct 29 2017 %e A275762 G.f.: A(x) = 2 - x + 2*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 22*x^6 - 41*x^7 + 74*x^8 - 133*x^9 + 243*x^10 - 444*x^11 + 806*x^12 - 1465*x^13 + 2669*x^14 - 4859*x^15 +... %t A275762 m = 51; %t A275762 2 + ContinuedFractionK[-x^(2i-1), 1+2x^i, {i, 1, Sqrt[m]//Floor}] + O[x]^m // CoefficientList[#, x]& (* _Jean-François Alcover_, Nov 02 2019 *) %o A275762 (PARI) {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = 1/(A + y*x^(n+1-k))); polcoeff(1 + subst(A,y,1), n)} %o A275762 for(n=0, 50, print1(a(n), ", ")) %Y A275762 Cf. A275760, A275761, A006958, A227309, A291940 (column 1). %K A275762 sign %O A275762 0,1 %A A275762 _Paul D. Hanna_, Aug 10 2016