cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275790 Triangle T(n, m) appearing in the expansion of the scaled phase space coordinate qhat of the plane pendulum in terms of the Jacobi nome q and sin(v) multiplying even powers of 2*cos(v), with v = u/((2/Pi)*K(k)).

This page as a plain text file.
%I A275790 #15 Dec 19 2017 02:15:31
%S A275790 1,8,1,-32,11,3,-736,-92,9,15,2816,-593,-249,-65,35,48976,6122,1581,
%T A275790 -970,-1295,315,-951424,61252,67791,46030,18515,-21735,3465,-1045952,
%U A275790 -130744,-92082,-30445,14455,53928,-25179,3003,26933248,1069361,-1666047,-634255,-1167740,-1258236,1562253,-471471,45045,634836808,79354601,24881793,17914550,30289840,12635028,-71064609,42480438,-9594585,765765
%N A275790 Triangle T(n, m) appearing in the expansion of the scaled phase space coordinate qhat of the plane pendulum in terms of the Jacobi nome q and sin(v) multiplying even powers of 2*cos(v), with v = u/((2/Pi)*K(k)).
%C A275790 The dimensionless scaled phase space coordinates of the plane pendulum are (qtilde(tau, k), ptilde(tau, k)) with tau = omega_0*t, omega^2 = g/L (L is the  length of the pendulum, g the acceleration), and the energy variable E = 2*k^2 = 2*sin^2(Theta_0/2), with the maximal deflection angle Theta_0 (from [0, Pi/2]). qtilde = Theta/(2*k)) with the deflection angle Theta. Similarly ptilde = (d(Theta)/d(tau))/(2*k).
%C A275790 The exact solution is qtilde(tau, k) = (1/k)*arcsin(k*sn(tau, k)) with Jacobi's elliptic sn function, and ptilde(tau,k) = cn(tau, k) with the elliptic cn function.
%C A275790 Here the expansion in new variables v and q is used where v = tau/((2/Pi)*K(k)) and q = exp(-Pi*K'(k)/K(k)) with the real and imaginary quarter periods K and K'. This leads to qhat(v, q) = qtilde(tau(v, q), k(q)) with tau(v, q) = theta_3^2(0, q)*v. (For theta_3^2(0, q) see A004018.) Because k is actually a function of k^2 one uses the q expansion of (k/4)^2 given in A005798.
%C A275790 Using the result for the sn expansion in q and v from A274662 one obtains qhat(v, q) = sin(v)*Sum_{n >= 0} q^n/L(n)*Sum_{m=0..n} T(n, m)*(2*cos(v))^(2*m) with L(n) = A025547(n+1) = lcm{1, 3, ..., (2*n+1)}.
%C A275790 This entry is inspired by a paper of Bradley Klee giving an approximation to the phase space solution of the plane pendulum (see A273506). Thanks for discussions via e-mail go to him.
%F A275790 T(n, m)*(2*cos(v))^(2*m)), n >= 0, m = 0, 1, ..., n, gives the contribution to q^n/L(n) (L(n) = A025547(n+1)) in the rescaled phase space coordinate qhat(v, q) expansion of the plane pendulum. See a comment above for details.
%e A275790 The triangle T(n, m) begins:
%e A275790 n\m    0    1    2    3     4   5 ...
%e A275790 0:     1
%e A275790 1:     8    1
%e A275790 2:   -32   11    3
%e A275790 3:  -736  -92    9   15
%e A275790 4:  2816 -593 -249  -65    35
%e A275790 5: 48976 6122 1581 -970 -1295 315
%e A275790 ...
%e A275790 row n=6: -951424 61252 67791 46030 18515 -21735 3465,
%e A275790 row n=7: -1045952 -130744 -92082 -30445 14455 53928 -25179 3003,
%e A275790 row n=8: 26933248 1069361 -1666047 -634255 -1167740 -1258236 1562253 -471471 45045,
%e A275790 row n=9: 634836808 79354601 24881793 17914550 30289840 12635028 -71064609 42480438 -9594585 765765.
%e A275790 ...
%e A275790 The corresponding L(n) = A025547(n+1) numbers are 1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535,...
%e A275790 n=4: the contribution to qhat(v, q) of order q^4 is (q^4/315)*(2816 - 593*(2*cos(v))^2 - 249*(2*cos(v))^4 - 65*(2*cos(v))^6 + 35*(2*cos(v))^8).
%Y A275790 Cf. A004018, A005798, A025547, A274662.
%K A275790 sign,tabl
%O A275790 0,2
%A A275790 _Wolfdieter Lang_, Aug 09 2016