cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275792 Decimal expansion of the sum of the reciprocals of the tetradecagonal numbers A051866.

This page as a plain text file.
%I A275792 #35 Mar 25 2024 09:59:10
%S A275792 1,1,5,0,9,8,2,3,6,8,0,9,4,6,7,6,3,8,6,3,6,3,6,8,9,8,9,6,9,5,2,6,7,5,
%T A275792 0,5,8,3,0,9,6,6,7,0,9,5,5,1,8,7,4,9,1,0,9,8,3,9,6,4,5,7,8,4,5,0,5,0,
%U A275792 4,2,6,9,1,0,9,1,3,6,6,7,4,1,4,0,9,6,6,7,5,5,3,7,0,6,3,0,5,1,5
%N A275792 Decimal expansion of the sum of the reciprocals of the tetradecagonal numbers A051866.
%C A275792 See Table 1 of the Downey et al. link.
%C A275792 From _Wolfdieter Lang_, Nov 09 2017: (Start)
%C A275792 The general formula for S_{2*(k+1)} = Sum_{n>=0} 1/((n+1)*(k*n+1)) given in the Downey et al. link is a special case of the simpler formula for V(m,r) = Sum_{n>=0} 1/((n+1)*(m*n + r)), r = 1,2, ... ,m -1. V(m,r) = (m/(m-r))*v_m(r) in Koecher's notation. For this formula for m*v_m(r) see a comment in A294512.
%C A275792 The special case is m = k and r = 1, leading to S_{2*(k+1)} = V(k,1) = (log(k) + (Pi/2)*cot(Pi/k) - Sum_{j=1..k-1} cos(2*Pi*j/k)*log(2*sin(Pi*j/k)))/(k-1), for k >= 2.
%C A275792 S_14, for k=6, is then given by the formula below (also obtained from the more complicated formula of Downey et al.).
%C A275792 The partial sums are given in A294834/A294835.
%C A275792 (End)
%D A275792 Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193. See (6/5)*v_6(1) on p. 192.
%H A275792 G. C. Greubel, <a href="/A275792/b275792.txt">Table of n, a(n) for n = 1..10000</a>
%H A275792 Lawrence Downey, Boon W. Ong, and James A. Sellers, <a href="https://www.d.umn.edu/~jsellers/downey_ong_sellers_cmj_preprint.pdf">Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers</a>, Coll. Math. J., 39, no. 5 (2008), 391-394.
%F A275792 Sum_{n >= 1} 1/(n*(6*n - 5)) = 2*log(2)/5 + 3*log(3)/10 + sqrt(3)*Pi/10.
%e A275792 1.150982368094676386363689896952675058309...
%t A275792 RealDigits[2*Log[2]/5 + 3*Log[3]/10 + Sqrt[3]*Pi/10, 10, 120][[1]] (* _Amiram Eldar_, Jun 25 2023 *)
%o A275792 (PARI) 2*log(2)/5 + 3*log(3)/10 + sqrt(3)*Pi/10 \\ _Michel Marcus_, Nov 09 2017
%o A275792 (Magma) SetDefaultRealField(RealField(139)); R:= RealField(); (4*Log(2) + 3*Log(3) + Pi(R)*Sqrt(3))/10; // _G. C. Greubel_, Mar 25 2024
%o A275792 (SageMath) numerical_approx((4*log(2) + 3*log(3) + pi*sqrt(3))/10, digits=139) # _G. C. Greubel_, Mar 25 2024
%Y A275792 Cf. A013661, A016627, A051866, A244641, A244645, A294512, A294834, A294835.
%K A275792 nonn,cons,easy
%O A275792 1,3
%A A275792 _Wolfdieter Lang_, Sep 12 2016