This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275804 #24 Mar 24 2021 09:51:49 %S A275804 0,1,2,3,4,6,7,8,9,10,12,13,16,18,20,24,25,26,27,28,30,31,32,33,34,36, %T A275804 37,40,42,44,48,49,50,51,52,60,61,64,66,68,72,73,76,78,79,82,90,96,98, %U A275804 102,104,108,120,121,122,123,124,126,127,128,129,130,132,133,136,138,140,144,145,146,147,148,150,151,152,153,154,156,157,160 %N A275804 Numbers with at most one nonzero digit on each digit slope of the factorial base representation of n. %C A275804 Indexing starts from zero, because a(0) = 0 is a special case in this sequence. %C A275804 Numbers n for which A275947(n) = 0 or equally, for which A275811(n) <= 1. %C A275804 Numbers n for which A008683(A275734(n)) <> 0, that is, indices of squarefree terms in A275734. %C A275804 Numbers n for which A060130(n) = A060502(n). %C A275804 Numbers with at most one nonzero digit on each digit slope of the factorial base representation of n (see A275811 and A060502 for the definition of slopes in this context). More exactly: numbers n in whose factorial base representation (A007623) there does not exist a pair of digit positions i_1 and i_2 with nonzero digits d_1 and d_2, such that (i_1 - d_1) = (i_2 - d_2). %H A275804 Antti Karttunen, <a href="/A275804/b275804.txt">Table of n, a(n) for n = 0..10000</a> %H A275804 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %o A275804 (Scheme, with _Antti Karttunen_'s IntSeq-library, various implementations) %o A275804 (define A275804 (ZERO-POS 0 0 A275947)) %o A275804 (define A275804 (MATCHING-POS 0 0 (lambda (n) (>= 1 (A275811 n))))) %o A275804 (define A275804 (NONZERO-POS 0 0 (COMPOSE A008683 A275734))) %o A275804 (define A275804 (MATCHING-POS 0 0 (lambda (n) (= (A060130 n) (A060502 n))))) %o A275804 (Python) %o A275804 from operator import mul %o A275804 from sympy import prime, factorial as f %o A275804 from sympy.ntheory.factor_ import core %o A275804 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p %o A275804 def a275732(n): %o A275804 x=str(a007623(n))[::-1] %o A275804 return 1 if n==0 or x.count("1")==0 else reduce(mul, [prime(i + 1) for i in range(len(x)) if x[i]=='1']) %o A275804 def a257684(n): %o A275804 x=str(a007623(n))[:-1] %o A275804 y="".join(str(int(i) - 1) if int(i)>0 else '0' for i in x)[::-1] %o A275804 return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) %o A275804 def a(n): return 1 if n==0 else a275732(n)*a(a257684(n)) %o A275804 def ok(n): return 1 if n==0 else core(a(n))==a(n) %o A275804 print([n for n in range(201) if ok(n)]) # _Indranil Ghosh_, Jun 19 2017 %Y A275804 Complement: A275805. %Y A275804 Indices of zeros in A275947 and A275962. %Y A275804 Intersection with A276005 gives A261220. %Y A275804 Cf. A059590 (a subsequence). %Y A275804 Cf. A007623, A008683, A060130, A060502, A275734, A275811. %K A275804 nonn,base %O A275804 0,3 %A A275804 _Antti Karttunen_, Aug 10 2016