cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275804 Numbers with at most one nonzero digit on each digit slope of the factorial base representation of n.

This page as a plain text file.
%I A275804 #24 Mar 24 2021 09:51:49
%S A275804 0,1,2,3,4,6,7,8,9,10,12,13,16,18,20,24,25,26,27,28,30,31,32,33,34,36,
%T A275804 37,40,42,44,48,49,50,51,52,60,61,64,66,68,72,73,76,78,79,82,90,96,98,
%U A275804 102,104,108,120,121,122,123,124,126,127,128,129,130,132,133,136,138,140,144,145,146,147,148,150,151,152,153,154,156,157,160
%N A275804 Numbers with at most one nonzero digit on each digit slope of the factorial base representation of n.
%C A275804 Indexing starts from zero, because a(0) = 0 is a special case in this sequence.
%C A275804 Numbers n for which A275947(n) = 0 or equally, for which A275811(n) <= 1.
%C A275804 Numbers n for which A008683(A275734(n)) <> 0, that is, indices of squarefree terms in A275734.
%C A275804 Numbers n for which A060130(n) = A060502(n).
%C A275804 Numbers with at most one nonzero digit on each digit slope of the factorial base representation of n (see A275811 and A060502 for the definition of slopes in this context). More exactly: numbers n in whose factorial base representation (A007623) there does not exist a pair of digit positions i_1 and i_2 with nonzero digits d_1 and d_2, such that (i_1 - d_1) = (i_2 - d_2).
%H A275804 Antti Karttunen, <a href="/A275804/b275804.txt">Table of n, a(n) for n = 0..10000</a>
%H A275804 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%o A275804 (Scheme, with _Antti Karttunen_'s IntSeq-library, various implementations)
%o A275804 (define A275804 (ZERO-POS 0 0 A275947))
%o A275804 (define A275804 (MATCHING-POS 0 0 (lambda (n) (>= 1 (A275811 n)))))
%o A275804 (define A275804 (NONZERO-POS 0 0 (COMPOSE A008683 A275734)))
%o A275804 (define A275804 (MATCHING-POS 0 0 (lambda (n) (= (A060130 n) (A060502 n)))))
%o A275804 (Python)
%o A275804 from operator import mul
%o A275804 from sympy import prime, factorial as f
%o A275804 from sympy.ntheory.factor_ import core
%o A275804 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
%o A275804 def a275732(n):
%o A275804     x=str(a007623(n))[::-1]
%o A275804     return 1 if n==0 or x.count("1")==0 else reduce(mul, [prime(i + 1) for i in range(len(x)) if x[i]=='1'])
%o A275804 def a257684(n):
%o A275804     x=str(a007623(n))[:-1]
%o A275804     y="".join(str(int(i) - 1) if int(i)>0 else '0' for i in x)[::-1]
%o A275804     return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))])
%o A275804 def a(n): return 1 if n==0 else a275732(n)*a(a257684(n))
%o A275804 def ok(n): return 1 if n==0 else core(a(n))==a(n)
%o A275804 print([n for n in range(201) if ok(n)]) # _Indranil Ghosh_, Jun 19 2017
%Y A275804 Complement: A275805.
%Y A275804 Indices of zeros in A275947 and A275962.
%Y A275804 Intersection with A276005 gives A261220.
%Y A275804 Cf. A059590 (a subsequence).
%Y A275804 Cf. A007623, A008683, A060130, A060502, A275734, A275811.
%K A275804 nonn,base
%O A275804 0,3
%A A275804 _Antti Karttunen_, Aug 10 2016