This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275805 #24 Apr 26 2021 11:19:05 %S A275805 5,11,14,15,17,19,21,22,23,29,35,38,39,41,43,45,46,47,53,54,55,56,57, %T A275805 58,59,62,63,65,67,69,70,71,74,75,77,80,81,83,84,85,86,87,88,89,91,92, %U A275805 93,94,95,97,99,100,101,103,105,106,107,109,110,111,112,113,114,115,116,117,118,119,125,131,134,135,137,139,141,142,143,149,155 %N A275805 Indices of nonsquarefree terms in A275734; numbers with at least one digit slope (in their factorial base representation) with multiple nonzero digits. (See comments for the exact definition). %C A275805 Numbers n for which A008683(A275734(n)) = 0. %C A275805 Numbers n for which A275811(n) > 1. %C A275805 Numbers n in whose factorial base representation (A007623) there exists at least one pair of digit positions i_1 and i_2 with nonzero digits d_1 and d_2 such that (i_1 - d_1) = (i_2 - d_2). %H A275805 Antti Karttunen, <a href="/A275805/b275805.txt">Table of n, a(n) for n = 1..10000</a> %H A275805 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a> %e A275805 For n=5, "21" in factorial base (A007623), the pair 2 (in position 2) and 1 (in position 1) satisfies the condition, as (2-2) = (1-1), thus 5 is included. %e A275805 For n=55, "2101" in factorial base, the pair 2 (in position 4) and 1 (in position 3) satisfies the condition, as (4-2) = (3-1), thus 55 is included. %e A275805 For n=67, "2301" in factorial base, the pair 3 (in position 3) and 1 (in position 1) satisfies the condition, as (3-3) = (1-1), thus 67 is included in the sequence. %o A275805 (Scheme, with _Antti Karttunen_'s IntSeq-library, two alternatives) %o A275805 (define A275805 (ZERO-POS 1 1 (COMPOSE A008683 A275734))) %o A275805 (define A275805 (MATCHING-POS 1 1 (lambda (n) (< 1 (A275811 n))))) %o A275805 (Python) %o A275805 from operator import mul %o A275805 from sympy import prime, factorial as f, mobius %o A275805 from functools import reduce %o A275805 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p %o A275805 def a275732(n): %o A275805 x=str(a007623(n))[::-1] %o A275805 return 1 if n==0 or "1" not in x else reduce(mul, [prime(i + 1) for i in range(len(x)) if x[i]=='1']) %o A275805 def a257684(n): %o A275805 x=str(a007623(n))[:-1] %o A275805 y="".join(str(int(i) - 1) if int(i)>0 else '0' for i in x)[::-1] %o A275805 return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) %o A275805 def a(n): return 1 if n==0 else a275732(n)*a(a257684(n)) %o A275805 print([n for n in range(201) if mobius(a(n))==0]) # _Indranil Ghosh_, Jun 19 2017 %Y A275805 Complement: A275804. %Y A275805 Cf. A007623, A008683, A275734, A275811. %Y A275805 Cf. A275809 (a subsequence apart from its initial 0-term). %Y A275805 Subsequence of A115945. %K A275805 nonn,base %O A275805 1,1 %A A275805 _Antti Karttunen_, Aug 10 2016