cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275822 Alternating sums of the cubes of the central binomial coefficients.

This page as a plain text file.
%I A275822 #24 Jul 07 2020 08:01:12
%S A275822 1,7,209,7791,335209,15667799,773221225,39651016343,2092095886657,
%T A275822 112840936041343,6193764391911873,344853399798469695,
%U A275822 19429178297906958721,1105629520934309041279,63455683531507986958721,3668895994183490904049279
%N A275822 Alternating sums of the cubes of the central binomial coefficients.
%H A275822 Robert Israel, <a href="/A275822/b275822.txt">Table of n, a(n) for n = 0..555</a>
%H A275822 The Wolfram Functions Site, <a href="http://functions.wolfram.com/EllipticIntegrals/EllipticK/introductions/CompleteEllipticIntegrals/02/">Complete Elliptic Integrals</a>
%F A275822 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2*k,k)^3.
%F A275822 Recurrence: (n+2)^3*a(n+2)-(3*n+4)*(21*n^2+66*n+52)*a(n+1)-8*(2n+3)^3*a(n)=0.
%F A275822 G.f.: (4/Pi^2)*K((1-sqrt(1-64*t))/2)^2/(1+t), where K(x) is complete elliptic integral of the first kind (defined as in The Wolfram Functions Site).
%F A275822 a(n) ~ 2^(6*n+6) / (65*Pi^(3/2)*n^(3/2)). - _Vaclav Kotesovec_, Nov 16 2016
%p A275822 L:= [seq((-1)^k*binomial(2*k,k)^3,k=0..20)]:
%p A275822 B:= ListTools:-PartialSums(L):
%p A275822 seq((-1)^(k+1)*B[k],k=1..nops(B)); # _Robert Israel_, Nov 21 2016
%t A275822 Table[Sum[Binomial[2 k, k]^3 (-1)^(n - k), {k, 0, n}], {n, 0, 20}]
%t A275822 Table[Sum[(-1)^(n - k) (k + 1)^3 CatalanNumber[k]^3, {k, 0, n}], {n, 0, 20}] (* _Jan Mangaldan_, Jul 07 2020 *)
%o A275822 (Maxima) makelist(sum(binomial(2*k,k)^3*(-1)^(n-k),k,0,n),n,0,12);
%o A275822 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k,k)^3); \\ _Michel Marcus_, Jul 07 2020
%Y A275822 Cf. A079727.
%K A275822 nonn
%O A275822 0,2
%A A275822 _Emanuele Munarini_, Nov 15 2016