This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275823 #18 Jul 17 2019 02:51:43 %S A275823 1,2,3,4,5,3,7,4,9,5,11,6,13,7,15,8,17,9,19,5,7,11,23,12,25,13,9,14, %T A275823 29,15,31,8,33,17,35,18,37,19,13,10,41,7,43,22,45,23,47,12,49,25,51, %U A275823 13,53,9,11,28,19,29,59,15,61,31,21,16,65,33,67,17,69,35,71,36,73,37,75,38,77,13,79,20 %N A275823 Least k such that n divides phi(k^2). %H A275823 Robert Israel, <a href="/A275823/b275823.txt">Table of n, a(n) for n = 1..10000</a> %F A275823 a(n) <= n. %F A275823 From _Robert Israel_, Aug 10 2016: (Start) %F A275823 a(n) >= sqrt(n). %F A275823 If n is prime or the square of a prime, then a(n) = n. %F A275823 If n = m^j, then a(n) <= m^ceiling((j+1)/2). (End) %e A275823 a(54) = 9 because 54 divides phi(9^2) = 54. %p A275823 N:= 100: # to get a(1)..a(N) %p A275823 S:= {$1..N}: A:= 'A': %p A275823 for k from 1 while S <> {} do %p A275823 r:= numtheory:-phi(k^2); %p A275823 E:= select(t -> r mod t = 0, S); %p A275823 if E <> {} then %p A275823 assign(seq(A[e],e=E) = seq(k ,e=E)); %p A275823 S:= S minus E; %p A275823 fi %p A275823 od: %p A275823 seq(A[i],i=1..N); # _Robert Israel_, Aug 10 2016 %t A275823 Table[k = 1; While[! Divisible[EulerPhi[k^2], n], k++]; k, {n, 80}] (* _Michael De Vlieger_, Aug 10 2016 *) %o A275823 (PARI) a(n) = {my(k=1); while(eulerphi(k^2) % n, k++); k; } %Y A275823 Cf. A002618. %K A275823 nonn,easy %O A275823 1,2 %A A275823 _Altug Alkan_, Aug 10 2016