A275872 A binomial convolution recurrence sequence.
0, 0, 1, 1, 2, 6, 18, 54, 173, 605, 2274, 9020, 37486, 163128, 743101, 3535765, 17518018, 90126158, 480514430, 2650912738, 15112253425, 88903779401, 539003066674, 3363608949132, 21581457167994, 142227480847092, 961868098767105, 6669657795455817, 47380035801732034, 344555811578909254, 2563218995058696890
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..648
Programs
-
Maple
A[0]:= 0: A[1]:= 0: for m from 2 to 50 do A[m]:= 1 + add(binomial(m-1,i+1)*A[i],i=0..m-2) od: seq(A[i],i=0..50); # Robert Israel, Aug 28 2016
-
Mathematica
Clear[a]; a[0] = 0 ; a[1] = 0; a[n_] := a[n] = 1 + Sum[Binomial[n - 1, j+1]*a[j], {j, 0, n - 1}]; Table[a[n], {n, 0, 22}]
-
PARI
first(n)=my(v=vector(n)); for(k=0,n-2, v[k+2]=sum(i=2,k, binomial(k+1,i+1)*v[i])+1); concat(0,v) \\ Charles R Greathouse IV, Aug 29 2016
Formula
Sum_{i=0..n} binomial(n+1,i+1)*a(i) = a(n+2) - 1.
G.f. g(x) satisfies g(x) = x^2/(1-x) + x^2*g(x/(1-x))/(1-x)^2. - Robert Israel, Aug 28 2016
Comments