cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275872 A binomial convolution recurrence sequence.

Original entry on oeis.org

0, 0, 1, 1, 2, 6, 18, 54, 173, 605, 2274, 9020, 37486, 163128, 743101, 3535765, 17518018, 90126158, 480514430, 2650912738, 15112253425, 88903779401, 539003066674, 3363608949132, 21581457167994, 142227480847092, 961868098767105, 6669657795455817, 47380035801732034, 344555811578909254, 2563218995058696890
Offset: 0

Views

Author

Olivier Gérard, Aug 11 2016

Keywords

Comments

Shifts 2 places left and decreases by one under a variant of binomial transform (see formula section).

Crossrefs

Programs

  • Maple
    A[0]:= 0:
    A[1]:= 0:
    for m from 2 to 50 do
      A[m]:= 1 + add(binomial(m-1,i+1)*A[i],i=0..m-2)
    od:
    seq(A[i],i=0..50); # Robert Israel, Aug 28 2016
  • Mathematica
    Clear[a]; a[0] = 0 ; a[1] = 0; a[n_] := a[n] = 1 + Sum[Binomial[n - 1, j+1]*a[j], {j, 0, n - 1}]; Table[a[n], {n, 0, 22}]
  • PARI
    first(n)=my(v=vector(n)); for(k=0,n-2, v[k+2]=sum(i=2,k, binomial(k+1,i+1)*v[i])+1); concat(0,v) \\ Charles R Greathouse IV, Aug 29 2016

Formula

Sum_{i=0..n} binomial(n+1,i+1)*a(i) = a(n+2) - 1.
G.f. g(x) satisfies g(x) = x^2/(1-x) + x^2*g(x/(1-x))/(1-x)^2. - Robert Israel, Aug 28 2016