A275902 Following the successive antidiagonals in A275895, let the n-th queen appear in square (x(n),y(n)); sequence gives y(n).
0, 2, 1, 4, 3, 8, 5, 10, 7, 6, 12, 14, 9, 18, 11, 13, 21, 24, 15, 26, 17, 16, 28, 30, 19, 20, 34, 36, 22, 38, 23, 40, 25, 27, 44, 47, 29, 31, 50, 52, 32, 33, 55, 57, 35, 37, 59, 62, 39, 65, 41, 42, 69, 43, 71, 73, 45, 75, 46, 77, 49, 48, 81, 83, 51, 85, 53, 88, 54, 56, 91, 58, 95, 97, 60, 99, 61, 101
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10386
Programs
-
Maple
See A275899. # Alternative Maple program from N. J. A. Sloane, Oct 03 2016 # To get 10000 terms of A275902 (xx), A275901 (yy), A276783 (ss), -A276325 (dd) M1:=100000; M2:=22000; M3:=10000; xx:=Array(0..M1,0); yy:=Array(0..M1,0); ss:=Array(0..M1,0); dd:=Array(0..M1,0); xx[0]:=0; yy[0]:=0; ss[0]:=0; dd[0]:=0; for n from 1 to M2 do sw:=-1; for s from ss[n-1]+1 to M2 do for i from 0 to s do x:=s-i; y:=i; if not member(x,xx,'p') and not member(y,yy,'p') and not member(x-y,dd,'p') then sw:=1; break; fi; od: # od i if sw=1 then break; fi; od: # od s if sw=-1 then lprint("error, n=",n); break; fi; xx[n]:=x; yy[n]:=y; ss[n]:=x+y; dd[n]:=x-y; od: # od n [seq(xx[i],i=0..M3)]: [seq(yy[i],i=0..M3)]: [seq(ss[i],i=0..M3)]: [seq(dd[i],i=0..M3)]:
Comments