cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275912 G.f. is square root of g.f. for A239112.

Original entry on oeis.org

1, 2, 16, 166, 1934, 24076, 312900, 4191528, 57424848, 800511928, 11314617512, 161736519334, 2333709074866, 33940921354676, 496985854805560, 7320036386083320, 108370564070861790, 1611667048718909412, 24065028942496468872, 360628842425757805380
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2016

Keywords

Crossrefs

Cf. A239112.

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[-2 + 64*x + Sqrt[1 - 256*x + 4096*x^2 + 12*(x - 16*x^2)^(1/3)] + (1/2)*Sqrt[-24 + 32*(1 - 32*x)^2 - 48*(x - 16*x^2)^(1/3) + (8*(1 + 480*x - 24576*x^2 + 262144*x^3)) / Sqrt[1 - 256*x + 4096*x^2 + 12*(x - 16*x^2)^(1/3)]]], {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 08 2016 *)

Formula

Recurrence: (n-1)*n*(3*n - 2)*(3*n - 1)*a(n) = 8*(n-1)^2*(36*n^2 - 72*n + 25)*a(n-1) - 16*(2*n - 5)*(2*n - 1)*(6*n - 11)*(6*n - 7)*a(n-2). - Vaclav Kotesovec, Sep 08 2016
a(n) ~ 2^(4*n-1/3) / (sqrt(3) * Gamma(2/3) * n^(4/3)) * (1 - sqrt(3)*Gamma(2/3)^2 / (Pi*2^(1/3)*n^(1/3))). - Vaclav Kotesovec, Sep 08 2016