A275925 Trajectory of 3 under repeated application of the morphism sigma: 3 -> 3656, 5 -> 365656, 6 -> 3656656.
3, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 5, 6, 3, 6
Offset: 1
Keywords
Examples
The first few generations of the iteration are: 3 3656 365636566563656563656656 3656365665636565636566563656365665636565636566563656656365656365665636563656656\ 3656563656656365656365665636563656656365656365665636566563656563656656 ...
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..35890
- J.-P. Allouche, M. Baake, J. Cassaigns, and D. Damanik, Palindrome complexity, arXiv:math/0106121 [math.CO], 2001; Theoretical Computer Science, 292 (2003), 9-31.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Index entries for sequences that are fixed points of mappings
Crossrefs
Programs
-
Mathematica
SubstitutionSystem[{3 -> {3, 6, 5, 6}, 5 -> {3, 6, 5, 6, 5, 6}, 6 -> {3, 6, 5, 6, 6, 5, 6}}, {3}, 3] // Last (* Jean-François Alcover, Jan 21 2018 *)
Formula
Theorem: The partial sums of the generalized version THETA(r,s,t) (see Comments) are given by the following formula: Sum_{i=1..n} THETA(r,s,t)(i) = r*A276796(n-1) + s*A276797(n-1) + t*A276798(n-1). - N. J. A. Sloane, Mar 23 2019
Comments