cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275949 Number of distinct nonzero digits that occur multiple times in factorial base representation of n: a(n) = A056170(A275735(n)).

This page as a plain text file.
%I A275949 #26 Feb 14 2024 01:05:06
%S A275949 0,0,0,1,0,0,0,1,1,1,0,1,0,0,0,1,1,1,0,0,0,1,0,0,0,1,1,1,0,1,1,1,1,1,
%T A275949 1,1,0,1,1,1,1,2,0,1,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,2,1,1,1,2,1,1,0,0,
%U A275949 0,1,1,1,0,0,0,1,0,0,0,1,1,1,0,1,0,0,0,1,1,1,1,1,1,2,1,1,0,0,0,1,0,0,0,1,1,1,0,1,0,0,0,1,1,1,0,0,0,1,0,0,0
%N A275949 Number of distinct nonzero digits that occur multiple times in factorial base representation of n: a(n) = A056170(A275735(n)).
%H A275949 Antti Karttunen, <a href="/A275949/b275949.txt">Table of n, a(n) for n = 0..40320</a>
%H A275949 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>.
%F A275949 a(n) = A056170(A275735(n)).
%F A275949 Other identities and observations. For all n >= 0.
%F A275949 a(n) = A275947(A225901(n)).
%F A275949 A275806(n) = A275948(n) + a(n).
%F A275949 a(n) <= A275964(n).
%e A275949 For n=0, with factorial base representation (A007623) also 0, there are no nonzero digits, thus a(0) = 0.
%e A275949 For n=2, with factorial base representation "10", there are no nonzero digits that are present multiple times, thus a(2) = 0.
%e A275949 For n=3 ("11") there is one distinct nonzero digit which occurs more than once, thus a(3) = 1.
%e A275949 For n=41 ("1221") there are two distinct nonzero digits ("1" and "2"), and both occur more than once, thus a(41) = 2.
%e A275949 For n=44 ( "1310") there are two distinct nonzero digits ("1" and "3"), but only the other (1) occurs more than once, thus a(44) = 1.
%t A275949 a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Count[Tally[Select[s, # > 0 &]][[;;, 2]], _?(# > 1 &)]]; Array[a, 100, 0] (* _Amiram Eldar_, Feb 14 2024 *)
%o A275949 (Scheme) (define (A275949 n) (A056170 (A275735 n)))
%o A275949 (Python)
%o A275949 from sympy import prime, factorint
%o A275949 from operator import mul
%o A275949 from functools import reduce
%o A275949 import collections
%o A275949 def a056170(n):
%o A275949     f = factorint(n)
%o A275949     return sum([1 for i in f if f[i]!=1])
%o A275949 def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
%o A275949 def a275735(n):
%o A275949     y=collections.Counter(map(int, list(str(a007623(n)).replace("0", "")))).most_common()
%o A275949     return 1 if n==0 else reduce(mul, [prime(y[i][0])**y[i][1] for i in range(len(y))])
%o A275949 def a(n): return a056170(a275735(n))
%o A275949 print([a(n) for n in range(201)]) # _Indranil Ghosh_, Jun 20 2017
%Y A275949 Cf. A056170, A275735.
%Y A275949 Cf. A265349 (indices of zeros), A265350 (of terms > 0).
%Y A275949 Cf. also A007623, A225901, A275806, A275947, A275948, A275964.
%K A275949 nonn,base
%O A275949 0,42
%A A275949 _Antti Karttunen_, Aug 15 2016