This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275970 #54 Sep 06 2016 10:49:11 %S A275970 2,6,13,26,51,100,197,390,775,1544,3081,6154,12299,24588,49165,98318, %T A275970 196623,393232,786449,1572882,3145747,6291476,12582933,25165846, %U A275970 50331671,100663320,201326617,402653210,805306395,1610612764,3221225501,6442450974,12884901919,25769803808,51539607585,103079215138,206158430243,412316860452,824633720869 %N A275970 a(n) = 3*2^n + n - 1. %H A275970 Carauleanu Marc, <a href="/A275970/b275970.txt">Table of n, a(n) for n = 0..400</a> %H A275970 S. W. Golomb, <a href="http://www.jstor.org/stable/2005337">Properties of the sequence 3.2^n+1</a>, Math. Comp., 30 (1976), 657-663. %H A275970 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2). %F A275970 a(n) = 2*a(n-1) - n + 2. %F A275970 a(n+1) - a(n) = A181565(n) %F A275970 a(n) = A007283(n) + n - 1 %F A275970 a(n) = A083706(n) + A000079(n) %F A275970 a(n) = A145071(n+1) - A000079(n) %F A275970 a(n) = A079583(n) + A005408(n) %F A275970 a(n) = A068156(n+1) - A079583(n) %F A275970 a(n) = (A068156(n+1) + A005408(n)) / 2 %F A275970 a(n) = A000225(n) + A000325(n+1) + A005408(n) %F A275970 a(n) = A068156(n+1) - A000225(n) - A000325(n+1) %F A275970 a(n) = A068156(n+1) - A007283(n) + n + 2. %F A275970 a(n) = A000079(n) + A000225(n) + A000295(n) + A005408(n) %F A275970 From _G. C. Greubel_, Aug 18 2016: (Start) %F A275970 O.g.f.: (2 - 2*x - x^2)/( (1-2*x)*(1-x)^2 ). %F A275970 E.g.f.: 3*exp(2*x) + (x-1)*exp(x). %F A275970 a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-2). (End) %t A275970 LinearRecurrence[{4,-5,2},{2,6,13}, 25] (* or *) Table[3*2^n + n - 1, {n,0,25}] (* _G. C. Greubel_, Aug 18 2016 *) %o A275970 (PARI) a(n)=3*2^n+n-1 \\ _Charles R Greathouse IV_, Aug 27 2016 %K A275970 nonn,easy %O A275970 0,1 %A A275970 _Miquel Cerda_, Aug 15 2016