A275976 Decimal expansion of a constant relating to the density of Fibonacci integers.
5, 1, 5, 5, 1, 2, 4, 3, 4, 0, 0, 7, 4, 6, 4, 4, 0, 5, 5, 1, 4, 1, 6, 1, 9, 3, 3, 7, 5, 6, 5, 2, 2, 8, 2, 8, 7, 4, 8, 5, 7, 6, 0, 4, 5, 1, 8, 8, 1, 1, 0, 0, 2, 4, 8, 3, 1, 4, 3, 1, 1, 0, 7, 7, 6, 9, 7, 3, 5, 0, 2, 9, 8, 8, 6, 6, 9, 4, 6, 6, 3
Offset: 1
Examples
5.1551243400746440551416193375652282874857604518811002483143110776973502988669...
Links
- Florian Luca, Carl Pomerance, Stephan Wagner, Fibonacci Integers, J. Number Theory 131 (2011), pp. 440-457. [conference version]
Crossrefs
Cf. A178772.
Programs
-
Mathematica
RealDigits[2 Zeta[2] Sqrt[Zeta[3]/Zeta[6]/Log[GoldenRatio]], 10, 81][[1]] (* Indranil Ghosh, Mar 19 2017 *)
-
PARI
phi=(sqrt(5)+1)/2 2*zeta(2)*sqrt(zeta(3)/zeta(6)/log(phi))
Formula
2*zeta(2)*sqrt(zeta(3)/zeta(6)/log(phi)) where phi = (1 + sqrt(5))/2 is the golden ratio.
Comments