This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275985 #15 May 22 2018 17:35:58 %S A275985 1,3,6,4,10,6,14,4,7,10,22,6,26,14,10,5,34,7,38,10,14,22,46,6,11,26,9, %T A275985 14,58,10,62,5,22,34,14,7,74,38,26,10,82,14,86,22,10,46,94,6,21,11,34, %U A275985 26,106,9,22,14,38,58,118,10,122,62,14,6,26,22,134,34,46,14,142,7,146 %N A275985 Least k such that n divides phi(k!) (k > 0). %H A275985 Robert Israel, <a href="/A275985/b275985.txt">Table of n, a(n) for n = 1..10000</a> %F A275985 From _Robert Israel_, Aug 15 2016: (Start) %F A275985 If m and n are coprime then a(m*n) = max(a(m),a(n)). %F A275985 a(n) <= 2n, with equality iff n is an odd prime. %F A275985 Suppose p is an odd prime. Then %F A275985 a(p) = 2p %F A275985 If 2p+1 is prime then a(p^2) = 2p+1 and a(p^3) = 3p. %F A275985 Otherwise a(p^2) = 3p and a(p^3) = 4p. (End) %e A275985 a(4) = 4 because 4 divides phi(4!) = 8. %p A275985 A:= proc(n) option remember; %p A275985 local F,p,e,t,k; %p A275985 F:= ifactors(n)[2]; %p A275985 if nops(F)=1 then %p A275985 p:= F[1][1]; %p A275985 e:= F[1][2]; %p A275985 if p = 2 then %p A275985 t:= 1; if e=1 then return 3 fi; %p A275985 else %p A275985 t:= 0 %p A275985 fi; %p A275985 for k from 2*p by p do %p A275985 t:= t + padic:-ordp(k,p); %p A275985 if t >= e then return k fi; %p A275985 if isprime(k+1) then %p A275985 t:= t+padic:-ordp(k,p); %p A275985 if t >= e then return(k+1) fi; %p A275985 fi; %p A275985 od %p A275985 else %p A275985 max(seq(procname(t[1]^t[2]), t=F)) %p A275985 fi %p A275985 end proc: %p A275985 A(1):= 1: %p A275985 map(A, [$1..100]); # _Robert Israel_, Aug 15 2016 %t A275985 With[{ep=Table[{EulerPhi[k!],k},{k,200}]},Table[SelectFirst[ep,Divisible[#[[1]],n]&],{n,80}]][[All,2]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, May 22 2018 *) %o A275985 (PARI) a(n) = {my(k = 1); while(eulerphi(k!) % n, k++); k; } %Y A275985 Cf. A048855. %K A275985 nonn,look %O A275985 1,2 %A A275985 _Altug Alkan_, Aug 15 2016