cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A292024 a(n) is the smallest k such that n divides psi(k!) (k > 0).

Original entry on oeis.org

1, 3, 2, 3, 10, 3, 13, 4, 5, 10, 22, 3, 26, 13, 10, 4, 34, 5, 37, 10, 13, 22, 46, 4, 15, 26, 6, 13, 58, 10, 61, 5, 22, 34, 13, 5, 73, 37, 26, 10, 82, 13, 86, 22, 10, 46, 94, 4, 14, 15, 34, 26, 106, 6, 22, 13, 37, 58, 118, 10, 122, 61, 13, 6, 26, 22, 134, 34, 46, 13, 142, 5, 146, 73, 15, 37, 22, 26, 157
Offset: 1

Views

Author

Altug Alkan, Sep 07 2017

Keywords

Comments

From Robert Israel, Sep 14 2017: (Start)
If m and n are coprime then a(m*n) = max(a(m),a(n)).
a(n) <= 2n.
Suppose p is a prime >= 5. Then
a(p) = 2p-1 if p is in A005382, otherwise 2p.
a(p^2) = 2p if p is in A005382, otherwise 3p.
a(p^3) = 3p if p is in A005382, 4p-1 if p is in A062737, otherwise 4p.
(End)

Examples

			a(4) = 3 because 4 divides psi(3!) = 12 and 3 is the least number with this property.
		

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember;
        local F, p, e, t, k;
        F:= ifactors(n)[2];
        if nops(F)=1 then
          p:= F[1][1];
          e:= F[1][2];
          if p = 3 then
            t:= 1; if e =1 then return 2 fi
          else t:= 0:
          fi;
          for k from 2*p by p do
            if isprime(k-1) then
              t:= t+padic:-ordp(k, p);
              if t >= e then return(k-1) fi;
            fi;
            t:= t + padic:-ordp(k, p);
            if t >= e then return k fi;
          od
        else
          max(seq(procname(t[1]^t[2]), t=F))
        fi
    end proc:
    A(1):= 1:
    map(A, [$1..100]); # Robert Israel, Sep 14 2017
  • Mathematica
    psi[n_] := Module[{p, e}, Product[{p, e} = pe; p^e + p^(e-1), {pe, FactorInteger[n]}]];
    a[n_] := Module[{k = 1}, While[!Divisible[psi[k!], n], k++]; k]; a[2] = 3;
    Array[a, 100] (* Jean-François Alcover, Oct 15 2020, after PARI *)
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    a(n) = {my(k=1); while(a001615(k!) % n, k++); k; } \\ after Charles R Greathouse IV at A001615
Showing 1-1 of 1 results.