cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275994 Numerators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.

This page as a plain text file.
%I A275994 #34 Jul 23 2025 15:40:47
%S A275994 1,-1,1,-17,31,-691,5461,-929569,3202291,-221930581,4722116521,
%T A275994 -968383680827,14717667114151,-2093660879252671,86125672563201181,
%U A275994 -129848163681107301953,868320396104950823611,-209390615747646519456961,14129659550745551130667441,-8486725345098385062639014237
%N A275994 Numerators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.
%C A275994 -log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion (t1/n + t2/n^3 + t3/n^5 + ...) where the numerators of the coefficients t1, t2, t3, ... are given by this sequence.
%C A275994 The sequence is different from A002425, but the first difference is at index 60 (see the text files).
%H A275994 G. C. Greubel, <a href="/A275994/b275994.txt">Table of n, a(n) for n = 1..275</a> (terms 1..64 from Richard P. Brent)
%H A275994 R. P. Brent, <a href="http://arxiv.org/abs/1608.04834"> Asymptotic approximation of central binomial coefficients with rigorous error bounds</a>, arXiv:1608.04834 [math.NA], 2016.
%F A275994 a(n) = numerator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).
%e A275994 For n = 4, a(4) = numerator(-17/13336) = -17.
%t A275994 Table[Numerator[(1 - 4^(-n)) BernoulliB[2 n] / (n (2 n - 1))], {n, 30}] (* _Vincenzo Librandi_, Sep 15 2016 *)
%o A275994 (Magma) [Numerator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..20]];
%o A275994 (PARI) a(n) = numerator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ _Joerg Arndt_, Sep 14 2016
%Y A275994 Denominators are A275995.
%K A275994 frac,sign
%O A275994 1,4
%A A275994 _Richard P. Brent_, Sep 13 2016