This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275994 #34 Jul 23 2025 15:40:47 %S A275994 1,-1,1,-17,31,-691,5461,-929569,3202291,-221930581,4722116521, %T A275994 -968383680827,14717667114151,-2093660879252671,86125672563201181, %U A275994 -129848163681107301953,868320396104950823611,-209390615747646519456961,14129659550745551130667441,-8486725345098385062639014237 %N A275994 Numerators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient. %C A275994 -log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion (t1/n + t2/n^3 + t3/n^5 + ...) where the numerators of the coefficients t1, t2, t3, ... are given by this sequence. %C A275994 The sequence is different from A002425, but the first difference is at index 60 (see the text files). %H A275994 G. C. Greubel, <a href="/A275994/b275994.txt">Table of n, a(n) for n = 1..275</a> (terms 1..64 from Richard P. Brent) %H A275994 R. P. Brent, <a href="http://arxiv.org/abs/1608.04834"> Asymptotic approximation of central binomial coefficients with rigorous error bounds</a>, arXiv:1608.04834 [math.NA], 2016. %F A275994 a(n) = numerator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))). %e A275994 For n = 4, a(4) = numerator(-17/13336) = -17. %t A275994 Table[Numerator[(1 - 4^(-n)) BernoulliB[2 n] / (n (2 n - 1))], {n, 30}] (* _Vincenzo Librandi_, Sep 15 2016 *) %o A275994 (Magma) [Numerator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..20]]; %o A275994 (PARI) a(n) = numerator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ _Joerg Arndt_, Sep 14 2016 %Y A275994 Denominators are A275995. %K A275994 frac,sign %O A275994 1,4 %A A275994 _Richard P. Brent_, Sep 13 2016