cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275995 Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.

This page as a plain text file.
%I A275995 #26 Sep 08 2022 08:46:17
%S A275995 8,192,640,14336,18432,180224,425984,15728640,8912896,79691776,
%T A275995 176160768,3087007744,3355443200,28991029248,62277025792,
%U A275995 4260607557632,1133871366144,9620726743040,20340965113856,343047627866112,360639813910528,3025855999639552,6333186975989760,211669182486413312
%N A275995 Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.
%C A275995 -log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion
%C A275995 (t1/n + t2/n^3 + t3/n^5 + ...) where the denominators of the coefficients t1, t2, t3, ... are given by this sequence.
%C A275995 The numerators are sequence A275994.
%H A275995 G. C. Greubel, <a href="/A275995/b275995.txt">Table of n, a(n) for n = 1..500</a> (terms 1..64 from Richard P. Brent)
%H A275995 R. P. Brent, <a href="http://arxiv.org/abs/1608.04834">Asymptotic approximation of central binomial coefficients with rigorous error bounds</a>, arXiv:1608.04834  [math.NA], 2016.
%F A275995 a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).
%e A275995 For n = 4, a(4) = denominator(-17/13336) = 13336.
%t A275995 Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* _G. C. Greubel_, Feb 15 2017 *)
%o A275995 (Magma) [Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]];
%o A275995 (PARI) a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ _Joerg Arndt_, Sep 14 2016
%Y A275995 Numerators are sequence A275994.
%K A275995 nonn,frac
%O A275995 1,1
%A A275995 _Richard P. Brent_, Sep 13 2016