This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275995 #26 Sep 08 2022 08:46:17 %S A275995 8,192,640,14336,18432,180224,425984,15728640,8912896,79691776, %T A275995 176160768,3087007744,3355443200,28991029248,62277025792, %U A275995 4260607557632,1133871366144,9620726743040,20340965113856,343047627866112,360639813910528,3025855999639552,6333186975989760,211669182486413312 %N A275995 Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient. %C A275995 -log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion %C A275995 (t1/n + t2/n^3 + t3/n^5 + ...) where the denominators of the coefficients t1, t2, t3, ... are given by this sequence. %C A275995 The numerators are sequence A275994. %H A275995 G. C. Greubel, <a href="/A275995/b275995.txt">Table of n, a(n) for n = 1..500</a> (terms 1..64 from Richard P. Brent) %H A275995 R. P. Brent, <a href="http://arxiv.org/abs/1608.04834">Asymptotic approximation of central binomial coefficients with rigorous error bounds</a>, arXiv:1608.04834 [math.NA], 2016. %F A275995 a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))). %e A275995 For n = 4, a(4) = denominator(-17/13336) = 13336. %t A275995 Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* _G. C. Greubel_, Feb 15 2017 *) %o A275995 (Magma) [Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]]; %o A275995 (PARI) a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ _Joerg Arndt_, Sep 14 2016 %Y A275995 Numerators are sequence A275994. %K A275995 nonn,frac %O A275995 1,1 %A A275995 _Richard P. Brent_, Sep 13 2016