A276000 Least k such that n! divides phi(k!) (k > 0).
1, 3, 6, 6, 10, 10, 14, 14, 14, 14, 22, 22, 26, 26, 26, 26, 34, 34, 38, 38, 38, 38, 46, 46, 46, 46, 46, 46, 58, 58, 62, 62, 62, 62, 62, 62, 74, 74, 74, 74, 82, 82, 86, 86, 86, 86, 94, 94, 94, 94, 94, 94, 106, 106, 106, 106, 106, 106, 118, 118, 122, 122, 122, 122
Offset: 1
Keywords
Examples
a(2) = 3 because phi(3!) is divisible by 2!.
Links
- Robert Israel, Table of n, a(n) for n = 1..5000
Programs
-
Maple
N:= 100: # for a(1)..a(N) V:= Vector(N): n:= 0: for k from 1 while n < N do r:= numtheory:-phi(k!); for i from n+1 to N while r mod (i!) = 0 do V[i]:= k; n:= i; od; od: convert(V,list);# Robert Israel, Apr 24 2020
-
Mathematica
Array[Block[{k = 1}, While[Mod[EulerPhi[k!], #!] != 0, k++]; k] &, 64] (* Michael De Vlieger, Apr 24 2020 *)
-
PARI
a(n) = {my(k = 1); while(eulerphi(k!) % n!, k++); k; }
Formula
a(n) = 2*A007917(n) for n>2. - Andrey Zabolotskiy, Aug 16 2016