cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276013 Diagonal of (1 - 9 x y) / ((1 - 3 y - 2 x + 3 y^2 + 8 x^2 y) * (1 - u - z) * (1 - v - w)).

This page as a plain text file.
%I A276013 #22 Dec 03 2017 17:08:00
%S A276013 1,12,864,100800,14112000,2139830784,338341183488,54913641209856,
%T A276013 9080061146956800,1523231914913280000,258557709598427086848,
%U A276013 44324863067728222027776,7663322563977594870300672,1334677098876385703362560000,233951210561895726160281600000
%N A276013 Diagonal of (1 - 9 x y) / ((1 - 3 y - 2 x + 3 y^2 + 8 x^2 y) * (1 - u - z) * (1 - v - w)).
%C A276013 "The corresponding (order-five) linear differential operator is not homomorphic to its adjoint, even with an algebraic extension, and its differential Galois group is SL(5,C)." (see A. Bostan link).
%H A276013 Gheorghe Coserea, <a href="/A276013/b276013.txt">Table of n, a(n) for n = 0..33</a>
%H A276013 A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, <a href="http://arxiv.org/abs/1507.03227">Diagonals of rational functions and selected differential Galois groups</a>, arXiv preprint arXiv:1507.03227 [math-ph], 2015, Eq. (36).
%H A276013 Jacques-Arthur Weil, <a href="http://www.unilim.fr/pages_perso/jacques-arthur.weil/diagonals/">Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"</a>
%F A276013 a(n) = [(xyzuvw)^n] (1-9*x*y)/((1 - 3*y - 2*x + 3*y^2 + 8*x^2*y) * (1-u-z) * (1-v-w)).
%F A276013 From _Vaclav Kotesovec_, Dec 03 2017: (Start)
%F A276013 Recurrence: (n-1)^2*n^3*(3*n - 5)*a(n) = 24*(n-1)^2*(2*n - 1)^2*(3*n - 4)*(3*n - 2)*a(n-1) - 384*(2*n - 3)^2*(2*n - 1)^2*(3*n - 5)*(3*n - 2)*a(n-2).
%F A276013 a(n) ~ Gamma(1/3) * 2^(6*n - 7/3) * 3^(n + 1/2) / (Pi^2 * n^(4/3)). (End)
%e A276013 1 + 12*x + 864*x^2 + 100800*x^3 + ...
%p A276013 diag_coeff := proc(expr, n)
%p A276013     local var := [seq(indets(expr))], nvar := numelems(var);
%p A276013     coeftayl(expr, var=[seq(0, i=1..nvar)], [seq(n, i=1..nvar)])
%p A276013 end proc:
%p A276013 pxy := (1 - 3*y - 2*x + 3*y^2 + 9*x^2*y):
%p A276013 expr := (1 - 9*x*y)/(pxy * (1-u-z-u*z) * (1-v-w)):
%p A276013 [seq(diag_coeff(expr, i), i=0..14)];
%t A276013 f = (1 - 9 x y)/((1 - 3y - 2x + 3 y^2 + 8 x^2 y)*(1 - u - z)*(1 - v - w));
%t A276013 a[n_] := Fold[SeriesCoefficient[#1, {#2, 0, n}] &, f, {x, y, z, u, v, w}];
%t A276013 Array[a, 40, 0] (* _Jean-François Alcover_, Dec 03 2017 *)
%Y A276013 Cf. A004987, A268549, A268545-A268555.
%K A276013 nonn
%O A276013 0,2
%A A276013 _Gheorghe Coserea_, Aug 16 2016