This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276015 #17 Dec 03 2017 10:28:14 %S A276015 1,18,1404,158760,21234150,3126159036,489778537248,80153987120064, %T A276015 13547671656870780,2347445149320843000,414851046001557525360, %U A276015 74499573518808987538080,13557818392046546526712440,2495117936356342079352318000,463604343771018075763879080000,86854813070150110063356637257600 %N A276015 Diagonal of (1 - 9 x y) / ((1 - 3 y - 2 x + 3 y^2 + 9 x^2 y) * (1 - u - z - u z) * (1 - v - w)). %C A276015 "The corresponding (order-four) linear differential operator is not homomorphic to its adjoint, even with an algebraic extension, and its differential Galois group is SL(4,C)." (see A. Bostan link). %H A276015 Gheorghe Coserea, <a href="/A276015/b276015.txt">Table of n, a(n) for n = 0..22</a> %H A276015 A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, <a href="http://arxiv.org/abs/1507.03227">Diagonals of rational functions and selected differential Galois groups</a>, arXiv preprint arXiv:1507.03227 [math-ph], 2015, Eq. (C.1). %H A276015 Jacques-Arthur Weil, <a href="http://www.unilim.fr/pages_perso/jacques-arthur.weil/diagonals/">Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"</a> %F A276015 a(n) = [(xyzuvw)^n] (1-9*x*y)/((1 - 3*y - 2*x + 3*y^2 + 9*x^2*y) * (1-u-z-u*z) * (1-v-w)). %F A276015 From _Vaclav Kotesovec_, Dec 03 2017: (Start) %F A276015 Recurrence: (n-1)*n^3*a(n) = 18*(n-1)*(2*n - 1)^2*(3*n - 2)*a(n-1) - 36*(2*n - 3)*(2*n - 1)*(3*n - 5)*(3*n - 2)*a(n-2). %F A276015 a(n) ~ Pi * 2^(2*n - 5/4) * 3^(2*n) * (1 + sqrt(2))^(2*n + 1) / (Gamma(1/3) * Pi^2 * n^(5/3)). (End) %e A276015 1 + 18*x + 1404*x^2 + 158760*x^3 + ... %p A276015 diag_coeff := proc(expr, n) %p A276015 local var := [seq(indets(expr))], nvar := numelems(var); %p A276015 coeftayl(expr, var=[seq(0, i=1..nvar)], [seq(n, i=1..nvar)]); %p A276015 end proc: %p A276015 pxy := (1 - 3*y - 2*x + 3*y^2 + 9*x^2*y): %p A276015 expr := (1 - 9*x*y)/(pxy * (1-u-z-u*z) * (1-v-w)): %p A276015 [seq(diag_coeff(expr, i), i=0..14)]; %t A276015 f = (1-9x y)/((1 - 3y - 2x + 3y^2 + 9x^2 y)*(1 - u - z - u z)*(1 - v - w)); %t A276015 a[n_] := Fold[SeriesCoefficient[#1, {#2, 0, n}]&, f, {x, y, z, u, v, w}]; %t A276015 Array[a, 40, 0] (* _Jean-François Alcover_, Dec 03 2017 *) %Y A276015 Cf. A004987, A268549, A268545-A268555. %K A276015 nonn %O A276015 0,2 %A A276015 _Gheorghe Coserea_, Aug 16 2016