cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276019 n^2 * a(n) = (88*n^2 - 132*n + 54) * a(n-1) - 500*(2*n-3)^2 * a(n-2), with a(0)=1, a(1)=10.

This page as a plain text file.
%I A276019 #11 Aug 25 2016 03:45:20
%S A276019 1,10,230,6500,199750,6366060,204990300,6539387400,202432551750,
%T A276019 5897526329500,151804596385780,2807347223915000,-15232296765302500,
%U A276019 -5584390420089725000,-416025902106681525000,-24002385182809425846000,-1235898175219724085176250,-59486502796252242452122500,-2731496764897242177292037500,-120874274801920384164027025000,-5181210157044172846922944311500
%N A276019 n^2 * a(n) = (88*n^2 - 132*n + 54) * a(n-1) - 500*(2*n-3)^2 * a(n-2), with a(0)=1, a(1)=10.
%H A276019 Gheorghe Coserea, <a href="/A276019/b276019.txt">Table of n, a(n) for n = 0..201</a>
%H A276019 Robert S. Maier, <a href="http://arxiv.org/abs/math/0611041">On Rationally Parametrized Modular Equations</a>, arXiv:math/0611041 [math.NT], 2006.
%F A276019 n^2*a(n) = (88*n^2-132*n+54)*a(n-1) - 500*(2*n-3)^2*a(n-2), with a(0)=1, a(1)=10.
%F A276019 0 = 4*x*(x^2+22*x+125)*y'' + (8*x^2+132*x+500)*y' + (x+10)*y, where y(x) = A(x/-500).
%e A276019 A(x) = 1 + 10*x + 230*x^2 + 6500*x^3 + ... is the g.f.
%o A276019 (PARI)
%o A276019 seq(N) = {
%o A276019   a = vector(N); a[1] = 10; a[2] = 230;
%o A276019   for (n = 3, N, a[n] = ((88*n^2 - 132*n + 54)*a[n-1] - 500*(2*n-3)^2 * a[n-2])/n^2);
%o A276019   concat(1, a);
%o A276019 };
%o A276019 seq(20)
%Y A276019 Cf. A091401, A276018.
%K A276019 sign
%O A276019 0,2
%A A276019 _Gheorghe Coserea_, Aug 23 2016