cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276024 Number of positive subset sums of integer partitions of n.

This page as a plain text file.
%I A276024 #23 Sep 26 2023 01:59:06
%S A276024 1,3,7,14,27,47,81,130,210,319,492,718,1063,1512,2178,3012,4237,5765,
%T A276024 7930,10613,14364,18936,25259,32938,43302,55862,72694,92797,119499,
%U A276024 151468,193052,242748,307135,383315,481301,597252,744199,918030,1137607,1395101,1718237,2098096,2569047,3121825,3805722
%N A276024 Number of positive subset sums of integer partitions of n.
%C A276024 For a multiset p of positive integers summing to n, a pair (t,p) is defined to be a positive subset sum if there exists a nonempty submultiset of p summing to t. Positive integers with positive subset sums form a multiorder. This sequence is dominated by A122768 (submultisets of integer partitions of n).
%H A276024 Fausto A. C. Cariboni, <a href="/A276024/b276024.txt">Table of n, a(n) for n = 1..150</a>
%H A276024 Konstantinos Koiliaris and Chao Xu, <a href="https://arxiv.org/abs/1507.02318">A Faster Pseudopolynomial Time Algorithm for Subset Sum</a>, arXiv:1507.02318 [cs.DS], 2015-2016.
%H A276024 Gus Wiseman, <a href="https://docs.google.com/document/d/1m0s6DGTBkDW9gvMuFmJHvy6oLGRAbQ7okAZcOPZawp0/pub">Comcategories and Multiorders</a> <a href="http://www.nafindix.com/math/academic/ComcategoriesandMultiordersv7.pdf">(pdf version)</a>
%e A276024 The a(4)=14 positive subset sums are: {(4,4), (1,31), (3,31), (4,31), (2,22), (4,22), (1,211), (2,211), (3,211), (4,211), (1,1111), (2,1111), (3,1111), (4,1111)}.
%t A276024 sums[ptn_?OrderedQ]:=sums[ptn]=If[Length[ptn]===1,ptn,Module[{pri,sms},
%t A276024 pri=Union[Table[Delete[ptn,i],{i,Length[ptn]}]];
%t A276024 sms=Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@pri;
%t A276024 Union@@sms
%t A276024 ]];
%t A276024 Table[Total[Length[sums[Sort[#]]]&/@IntegerPartitions[n]],{n,1,25}]
%t A276024 (* Second program: *)
%t A276024 b[n_, i_, s_] := b[n, i, s] = If[n == 0, Length[s], If[i < 1, 0, b[n, i - 1, s] + b[n - i, Min[n - i, i], {#, # + i}& /@ s // Flatten // Union]]];
%t A276024 a[n_] := b[n, n, {0}] - PartitionsP[n];
%t A276024 Array[a, 45] (* _Jean-François Alcover_, May 20 2021, after _Alois P. Heinz_ in A304792 *)
%o A276024 (Python)
%o A276024 # uses A304792_T
%o A276024 from sympy import npartitions
%o A276024 def A276024(n): return A304792_T(n,n,(0,),1) - npartitions(n) # _Chai Wah Wu_, Sep 25 2023
%Y A276024 Cf. A122768, A063834, A262671.
%K A276024 nonn
%O A276024 1,2
%A A276024 _Gus Wiseman_, Aug 16 2016